flink和机器学习模型的常用组合方式

背景

flink是一个低延迟高吞吐的系统,每秒处理的数据量高达数百万,而机器模型一般比较笨重,虽然功能强大,但是qps一般都比较低,日常工作中,我们一般是如何把flink和机器学习模型组合起来一起使用呢?

flink和机器学习模型的常用组合方式

第一种:flink处理和机器模型的处理完全分离

一般来说,这是目前常用的组合方式,首先利用flink集群先把数据处理完,然后输出一份结果数据到某个外部存储,比如DB中,到这里flink的处理就完成了。紧接着是会有一个外部的定时任务,其任务是获取flink的结果数据,然后调用机器模型接口获取最终的预测结果,把这份预测结果写入到最终的存储目的地

第二种: flink处理和机器模型处理完全结合

这种方式要解决的最大问题是flink的处理速度和机器模型的qps完全不是一个数量级的问题,所以为了将就机器模型的吞吐量,我们一般会在flink中进行数据聚合操作,比如把每分钟的数据聚合然后在调用一次机器模型,这样就相当于每分钟只会调用一次机器模型接口,这种访问量机器模型完全能应对

相关推荐
拓端研究室TRL2 小时前
【梯度提升专题】XGBoost、Adaboost、CatBoost预测合集:抗乳腺癌药物优化、信贷风控、比特币应用|附数据代码...
大数据
黄焖鸡能干四碗2 小时前
信息化运维方案,实施方案,开发方案,信息中心安全运维资料(软件资料word)
大数据·人工智能·软件需求·设计规范·规格说明书
编码小袁3 小时前
探索数据科学与大数据技术专业本科生的广阔就业前景
大数据
WeeJot嵌入式3 小时前
大数据治理:确保数据的可持续性和价值
大数据
zmd-zk4 小时前
kafka+zookeeper的搭建
大数据·分布式·zookeeper·中间件·kafka
激流丶4 小时前
【Kafka 实战】如何解决Kafka Topic数量过多带来的性能问题?
java·大数据·kafka·topic
测试界的酸菜鱼4 小时前
Python 大数据展示屏实例
大数据·开发语言·python
时差9534 小时前
【面试题】Hive 查询:如何查找用户连续三天登录的记录
大数据·数据库·hive·sql·面试·database
Mephisto.java4 小时前
【大数据学习 | kafka高级部分】kafka中的选举机制
大数据·学习·kafka
Mephisto.java5 小时前
【大数据学习 | kafka高级部分】kafka的优化参数整理
大数据·sql·oracle·kafka·json·database