flink和机器学习模型的常用组合方式

背景

flink是一个低延迟高吞吐的系统,每秒处理的数据量高达数百万,而机器模型一般比较笨重,虽然功能强大,但是qps一般都比较低,日常工作中,我们一般是如何把flink和机器学习模型组合起来一起使用呢?

flink和机器学习模型的常用组合方式

第一种:flink处理和机器模型的处理完全分离

一般来说,这是目前常用的组合方式,首先利用flink集群先把数据处理完,然后输出一份结果数据到某个外部存储,比如DB中,到这里flink的处理就完成了。紧接着是会有一个外部的定时任务,其任务是获取flink的结果数据,然后调用机器模型接口获取最终的预测结果,把这份预测结果写入到最终的存储目的地

第二种: flink处理和机器模型处理完全结合

这种方式要解决的最大问题是flink的处理速度和机器模型的qps完全不是一个数量级的问题,所以为了将就机器模型的吞吐量,我们一般会在flink中进行数据聚合操作,比如把每分钟的数据聚合然后在调用一次机器模型,这样就相当于每分钟只会调用一次机器模型接口,这种访问量机器模型完全能应对

相关推荐
chat2tomorrow6 分钟前
数据采集平台的起源与演进:从ETL到数据复制
大数据·数据库·数据仓库·mysql·低代码·postgresql·etl
TDengine (老段)39 分钟前
TDengine 选择函数 Max() 用户手册
大数据·数据库·物联网·时序数据库·tdengine·涛思数据
乐迪信息1 小时前
乐迪信息:AI摄像机在智慧煤矿人员安全与行为识别中的技术应用
大数据·人工智能·算法·安全·视觉检测
万邦科技Lafite3 小时前
实战演练:通过API获取商品详情并展示
大数据·数据库·python·开放api接口
在未来等你4 小时前
Elasticsearch面试精讲 Day 14:数据写入与刷新机制
大数据·分布式·elasticsearch·搜索引擎·面试
黄焖鸡能干四碗4 小时前
智慧教育,智慧校园,智慧安防学校建设解决方案(PPT+WORD)
java·大数据·开发语言·数据库·人工智能
phac1234 小时前
git 如何直接拉去远程仓库的内容且忽略本地与远端不一致的commit
大数据·git·elasticsearch
在未来等你4 小时前
Elasticsearch面试精讲 Day 11:索引模板与动态映射
大数据·分布式·elasticsearch·搜索引擎·面试
正在走向自律4 小时前
国产时序数据库选型指南-从大数据视角看透的价值
大数据·数据库·清华大学·时序数据库·iotdb·国产数据库
在未来等你4 小时前
Kafka面试精讲 Day 14:集群扩容与数据迁移
大数据·分布式·面试·kafka·消息队列