flink和机器学习模型的常用组合方式

背景

flink是一个低延迟高吞吐的系统,每秒处理的数据量高达数百万,而机器模型一般比较笨重,虽然功能强大,但是qps一般都比较低,日常工作中,我们一般是如何把flink和机器学习模型组合起来一起使用呢?

flink和机器学习模型的常用组合方式

第一种:flink处理和机器模型的处理完全分离

一般来说,这是目前常用的组合方式,首先利用flink集群先把数据处理完,然后输出一份结果数据到某个外部存储,比如DB中,到这里flink的处理就完成了。紧接着是会有一个外部的定时任务,其任务是获取flink的结果数据,然后调用机器模型接口获取最终的预测结果,把这份预测结果写入到最终的存储目的地

第二种: flink处理和机器模型处理完全结合

这种方式要解决的最大问题是flink的处理速度和机器模型的qps完全不是一个数量级的问题,所以为了将就机器模型的吞吐量,我们一般会在flink中进行数据聚合操作,比如把每分钟的数据聚合然后在调用一次机器模型,这样就相当于每分钟只会调用一次机器模型接口,这种访问量机器模型完全能应对

相关推荐
TDengine (老段)5 小时前
TDengine 使用最佳实践(2)
大数据·数据库·物联网·时序数据库·iot·tdengine·涛思数据
Deng9452013146 小时前
基于大数据的电力系统故障诊断技术研究
大数据·matplotlib·深度特征提取·随机森林分类算法·标签编码
Jackyzhe8 小时前
Flink学习笔记:整体架构
笔记·flink
小菜鸡06269 小时前
FlinkSQL通解
大数据·flink
寅鸷10 小时前
es里为什么node和shard不是一对一的关系
大数据·elasticsearch
码字的字节11 小时前
深入解析Hadoop架构设计:原理、组件与应用
大数据·hadoop·分布式·hadoop架构设计
渣渣盟12 小时前
Flink数据流高效写入MySQL实战
mysql·flink·scala
阿里云大数据AI技术13 小时前
云上AI推理平台全掌握 (3):服务接入与全球调度
大数据·人工智能·深度学习
时序数据说14 小时前
如何选择时序数据库:关键因素与实用指南
大数据·数据库·物联网·时序数据库·iotdb
金牌服务刘14 小时前
选择一个系统作为主数据源的优势与考量
大数据·数据分析·连续集成