flink和机器学习模型的常用组合方式

背景

flink是一个低延迟高吞吐的系统,每秒处理的数据量高达数百万,而机器模型一般比较笨重,虽然功能强大,但是qps一般都比较低,日常工作中,我们一般是如何把flink和机器学习模型组合起来一起使用呢?

flink和机器学习模型的常用组合方式

第一种:flink处理和机器模型的处理完全分离

一般来说,这是目前常用的组合方式,首先利用flink集群先把数据处理完,然后输出一份结果数据到某个外部存储,比如DB中,到这里flink的处理就完成了。紧接着是会有一个外部的定时任务,其任务是获取flink的结果数据,然后调用机器模型接口获取最终的预测结果,把这份预测结果写入到最终的存储目的地

第二种: flink处理和机器模型处理完全结合

这种方式要解决的最大问题是flink的处理速度和机器模型的qps完全不是一个数量级的问题,所以为了将就机器模型的吞吐量,我们一般会在flink中进行数据聚合操作,比如把每分钟的数据聚合然后在调用一次机器模型,这样就相当于每分钟只会调用一次机器模型接口,这种访问量机器模型完全能应对

相关推荐
2501_930104043 小时前
GitCode 疑难问题诊疗:全方位指南
大数据·elasticsearch·gitcode
健康平安的活着3 小时前
es7.17.x es服务yellow状态的排查&查看节点,分片状态数量
大数据·elasticsearch·搜索引擎
念念01073 小时前
基于MATLAB多智能体强化学习的出租车资源配置优化系统设计与实现
大数据·人工智能·matlab
sunxinyu5 小时前
曲面/线 拟合gnuplot
大数据·线性回归·数据处理·数据拟合·二维三维空间数据
专注API从业者6 小时前
基于 Flink 的淘宝实时数据管道设计:商品详情流式处理与异构存储
大数据·前端·数据库·数据挖掘·flink
淡酒交魂7 小时前
「Flink」业务搭建方法总结
大数据·数据挖掘·数据分析
mask哥7 小时前
详解flink java基础(一)
java·大数据·微服务·flink·实时计算·领域驱动
TDengine (老段)7 小时前
TDengine IDMP 高级功能(4. 元素引用)
大数据·数据库·人工智能·物联网·数据分析·时序数据库·tdengine
livemetee8 小时前
Flink2.0学习笔记:Flink服务器搭建与flink作业提交
大数据·笔记·学习·flink
zhang988000010 小时前
储能领域大数据平台的设计中如何使用 Hadoop、Spark、Flink 等组件实现数据采集、清洗、存储及实时 / 离线计算,支持储能系统分析与预测
大数据·hadoop·spark