使用opencv将sRGB格式的图片转换为BT.2020格式【sRGB】【BT.2020】

将sRGB格式的图片转换为BT.2020格式涉及到两个步骤:首先将sRGB转换到线性RGB,然后将线性RGB转换到BT.2020。这是因为sRGB图像通常使用伽马校正,而BT.2020工作在线性色彩空间中。

  1. 从sRGB到线性RGB:sRGB图像首先需要进行伽马校正解码转换为线性RGB。这个过程通常不是通过一个简单的线性矩阵实现的,而是通过以下公式:

    C_{linear} = \\begin{cases} \\frac{C_{sRGB}}{12.92}, \& \\text{if } C_{sRGB} \\leq 0.04045 \\ \\left(\\frac{C_{sRGB} + 0.055}{1.055}\\right)\^{2.4}, \& \\text{otherwise} \\end{cases}

    其中 (C_{linear}) 是线性RGB中的颜色分量值(红、绿、蓝),(C_{sRGB}) 是sRGB颜色空间中的对应分量值。

  2. 从线性RGB到BT.2020:接下来,您可以应用一个3x3的线性转换矩阵将线性RGB转换为BT.2020色彩空间。这个矩阵通常如下所示:

    [

    \begin{bmatrix}
    R_{BT.2020} \
    G_{BT.2020} \
    B_{BT.2020}
    \end{bmatrix}

    \begin{bmatrix}

    0.6274 & 0.3293 & 0.0433 \

    0.0691 & 0.9195 & 0.0114 \

    0.0164 & 0.0880 & 0.8956

    \end{bmatrix}

    \cdot

    \begin{bmatrix}

    R_{linear} \

    G_{linear} \

    B_{linear}

    \end{bmatrix}

    ]

在实际应用中,你首先需要编写代码将sRGB图像转换为线性RGB,然后再应用上述矩阵进行色彩空间的转换。以下是使用OpenCV在C++中实现这一过程的示例代码:

cpp 复制代码
#include <opencv2/opencv.hpp>
#include <cmath>

cv::Mat sRGBToLinearRGB(const cv::Mat& srgbImage) {
    cv::Mat linearRGB(srgbImage.size(), srgbImage.type());
    srgbImage.forEach<cv::Vec3b>([&](cv::Vec3b &pixel, const int * position) -> void {
        for (int i = 0; i < 3; ++i) {
            float c = pixel[i] / 255.0f;
            c = c <= 0.04045f ? c / 12.92f : std::pow((c + 0.055f) / 1.055f, 2.4f);
            linearRGB.at<cv::Vec3b>(position)[i] = static_cast<uchar>(std::round(c * 255.0f));
        }
    });
    return linearRGB;
}

int main() {
    // 假设你已经有了一个sRGB格式的cv::Mat对象 srgbImage
    cv::Mat srgbImage; // 加载你的sRGB图像

    // 将sRGB转换为线性RGB
    cv::Mat linearRGB = sRGBToLinearRGB(srgbImage);

    // 定义从线性RGB到BT.2020的转换矩阵
    cv::Matx33f transformMatrix(
        0.6274, 0.3293, 0.0433,
        0.0691, 0.9195, 0.0114,
        0.0164, 0.0880, 0.8956
    );

    // 应用转换矩阵
    cv::Mat bt2020Image;
    cv::transform(linearRGB, bt2020Image, transformMatrix);

    // bt2020Image现在包含转换后的图像

    return 0;
}
相关推荐
数科云3 小时前
AI提示词(Prompt)入门:什么是Prompt?为什么要写好Prompt?
人工智能·aigc·ai写作·ai工具集·最新ai资讯
Devlive 开源社区3 小时前
技术日报|Claude Code超级能力库superpowers登顶日增1538星,自主AI循环ralph爆火登榜第二
人工智能
软件供应链安全指南4 小时前
灵脉 IAST 5.4 升级:双轮驱动 AI 漏洞治理与业务逻辑漏洞精准检测
人工智能·安全
lanmengyiyu4 小时前
单塔和双塔的区别和共同点
人工智能·双塔模型·网络结构·单塔模型
微光闪现4 小时前
AI识别宠物焦虑、紧张和晕车行为,是否已经具备实际可行性?
大数据·人工智能·宠物
技术小黑屋_4 小时前
用好Few-shot Prompting,AI 准确率提升100%
人工智能
中草药z5 小时前
【嵌入模型】概念、应用与两大 AI 开源社区(Hugging Face / 魔塔)
人工智能·算法·机器学习·数据集·向量·嵌入模型
知乎的哥廷根数学学派5 小时前
基于数据驱动的自适应正交小波基优化算法(Python)
开发语言·网络·人工智能·pytorch·python·深度学习·算法
DisonTangor5 小时前
GLM-Image:面向密集知识与高保真图像生成的自回归模型
人工智能·ai作画·数据挖掘·回归·aigc
努力学习的小洋6 小时前
Python训练打卡Day5离散特征的处理-独热编码
人工智能·python·机器学习