使用opencv将sRGB格式的图片转换为BT.2020格式【sRGB】【BT.2020】

将sRGB格式的图片转换为BT.2020格式涉及到两个步骤:首先将sRGB转换到线性RGB,然后将线性RGB转换到BT.2020。这是因为sRGB图像通常使用伽马校正,而BT.2020工作在线性色彩空间中。

  1. 从sRGB到线性RGB:sRGB图像首先需要进行伽马校正解码转换为线性RGB。这个过程通常不是通过一个简单的线性矩阵实现的,而是通过以下公式:

    C_{linear} = \\begin{cases} \\frac{C_{sRGB}}{12.92}, \& \\text{if } C_{sRGB} \\leq 0.04045 \\ \\left(\\frac{C_{sRGB} + 0.055}{1.055}\\right)\^{2.4}, \& \\text{otherwise} \\end{cases}

    其中 (C_{linear}) 是线性RGB中的颜色分量值(红、绿、蓝),(C_{sRGB}) 是sRGB颜色空间中的对应分量值。

  2. 从线性RGB到BT.2020:接下来,您可以应用一个3x3的线性转换矩阵将线性RGB转换为BT.2020色彩空间。这个矩阵通常如下所示:

    [

    \begin{bmatrix}
    R_{BT.2020} \
    G_{BT.2020} \
    B_{BT.2020}
    \end{bmatrix}

    \begin{bmatrix}

    0.6274 & 0.3293 & 0.0433 \

    0.0691 & 0.9195 & 0.0114 \

    0.0164 & 0.0880 & 0.8956

    \end{bmatrix}

    \cdot

    \begin{bmatrix}

    R_{linear} \

    G_{linear} \

    B_{linear}

    \end{bmatrix}

    ]

在实际应用中,你首先需要编写代码将sRGB图像转换为线性RGB,然后再应用上述矩阵进行色彩空间的转换。以下是使用OpenCV在C++中实现这一过程的示例代码:

cpp 复制代码
#include <opencv2/opencv.hpp>
#include <cmath>

cv::Mat sRGBToLinearRGB(const cv::Mat& srgbImage) {
    cv::Mat linearRGB(srgbImage.size(), srgbImage.type());
    srgbImage.forEach<cv::Vec3b>([&](cv::Vec3b &pixel, const int * position) -> void {
        for (int i = 0; i < 3; ++i) {
            float c = pixel[i] / 255.0f;
            c = c <= 0.04045f ? c / 12.92f : std::pow((c + 0.055f) / 1.055f, 2.4f);
            linearRGB.at<cv::Vec3b>(position)[i] = static_cast<uchar>(std::round(c * 255.0f));
        }
    });
    return linearRGB;
}

int main() {
    // 假设你已经有了一个sRGB格式的cv::Mat对象 srgbImage
    cv::Mat srgbImage; // 加载你的sRGB图像

    // 将sRGB转换为线性RGB
    cv::Mat linearRGB = sRGBToLinearRGB(srgbImage);

    // 定义从线性RGB到BT.2020的转换矩阵
    cv::Matx33f transformMatrix(
        0.6274, 0.3293, 0.0433,
        0.0691, 0.9195, 0.0114,
        0.0164, 0.0880, 0.8956
    );

    // 应用转换矩阵
    cv::Mat bt2020Image;
    cv::transform(linearRGB, bt2020Image, transformMatrix);

    // bt2020Image现在包含转换后的图像

    return 0;
}
相关推荐
Christo313 小时前
TFS-2018《On the convergence of the sparse possibilistic c-means algorithm》
人工智能·算法·机器学习·数据挖掘
qq_5088234013 小时前
金融量化指标--2Alpha 阿尔法
大数据·人工智能
黑金IT13 小时前
`.cursorrules` 与 `.cursorcontext`:Cursor AI 编程助手时代下的“双轨配置”指南
人工智能
学弟13 小时前
快捷:常见ocr学术数据集预处理版本汇总(适配mmocr)
计算机视觉
dlraba80214 小时前
基于 OpenCV 的信用卡数字识别:从原理到实现
人工智能·opencv·计算机视觉
IMER SIMPLE14 小时前
人工智能-python-深度学习-经典神经网络AlexNet
人工智能·python·深度学习
小憩-16 小时前
【机器学习】吴恩达机器学习笔记
人工智能·笔记·机器学习
却道天凉_好个秋16 小时前
深度学习(二):神经元与神经网络
人工智能·神经网络·计算机视觉·神经元
UQI-LIUWJ16 小时前
unsloth笔记:运行&微调 gemma
人工智能·笔记·深度学习
THMAIL16 小时前
深度学习从入门到精通 - 生成对抗网络(GAN)实战:创造逼真图像的魔法艺术
人工智能·python·深度学习·神经网络·机器学习·生成对抗网络·cnn