chatGPT的FineTuning最佳实践:创建自己的微调模型

为了方便自己调用和及时跟上OpenAI官方API更新的节奏,我做了两件事:

  1. OpenAI API SDK java版本,可访问 github:openai-java
  2. 用VUE3写了一个网站应用,包括H5和PC两个版本(网址都是 web.felh.xyz ),还有小程序版【FELH AI】(后续不会更新了,因为不要face的微信开始对个人小程序也开始收年审的费用了)

到目前为止SDK已经支持所有2023-11-06 API更新后新加的接口(Assistants, Threads, Messages, Runs),移除了废弃和过时接口(Completions, Edits, Fine-tunes)


下面我就用一个具体的例子来创建一个基于GPT-3.5-turbo-1106这个版本的微调模型。

一、准备数据,录入系统、创建训练集文件并上传到OpenAI

  • 点击左下角用户头像,然后选择【个人微调模型(Fine-tuning Model)】菜单,进入下图所示页面。
  • 可以看到左上角有两种方式(【手动录入训练数据】和【上传训练集文件】)创建自己的训练集文件。(推荐使用【手动录入训练数据】)
  1. 手动录入训练数据


点击【录入新训练数据】,对于小白,就不要设置系统提示,只是输入问题和答案,对于单条问题和答案最好文本长一些,不要太简短,不然训练效果不好。对于一个训练文件,请至少包含10条数据,推荐包含50-100条数据。当然也不用担心自己的数据补全,等有了新的问题和答案还可以基于之前新建的微调模型继续微调。 我从网上粘贴了一些关于2023年10月以来巴以冲突的新闻,都是基础模型中不存在的内容。


点击需要训练集内容右侧的【加入训练文件】按钮加入文件。加入后,请点击本页面顶部提示中的训练文件名,然后点击【文件页面】跳转到文件页面找到对应的文件,如下图。


点击对应文件右侧上传训练集,对应训练数据会被上传到OpenAI。


记住当前的训练集文件名称,将在下一步中使用。

  1. 上传训练集文件


对于小白用户不建议使用这种方式创建训练集文件,需要自己准备数据,然后生成对应的JSONL文件,通过【上传文件】上传到OpenAI。 具体格式如下:

json 复制代码
{"messages": [{"role": "system", "content": "Marv is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "What's the capital of France?"}, {"role": "assistant", "content": "Paris, as if everyone doesn't know that already."}]}
{"messages": [{"role": "system", "content": "Marv is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "Who wrote 'Romeo and Juliet'?"}, {"role": "assistant", "content": "Oh, just some guy named William Shakespeare. Ever heard of him?"}]}
{"messages": [{"role": "system", "content": "Marv is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "How far is the Moon from Earth?"}, {"role": "assistant", "content": "Around 384,400 kilometers. Give or take a few, like that really matters."}]}

上传时purpose请选择fine-tune,上传后可在本页面得到一个最新上传的文件,也就是我们的训练集文件,此时这个文件已经在OpenAI服务器上了。

二、根据训练集文件创建自己的微调模型

回到个人微调模型页面,点击【新建模型】


在此页面中填入微调模型的名称,基础模型选择gpt-3.5-turbo-1106,训练文件选择上一步中上传的文件,点击确认。


然后经过大概10分钟的等待即可得到我们自己的微调模型。

三、调用最新生成的微调模型

下面是使用基础模型和我们生成的微调模型的区别(左侧基础模型,右侧为微调模型):

到这里也就结束了,如果你有任何问题可以在这里留言。

相关推荐
机器学习之心4 分钟前
基于CNN的航空发动机剩余寿命预测 (MATLAB实现)
人工智能·matlab·cnn
钝挫力PROGRAMER4 分钟前
AI中的“预训练”是什么意思
人工智能
Godspeed Zhao12 分钟前
自动驾驶中的传感器技术39——Radar(0)
人工智能·机器学习·自动驾驶·毫米波雷达
idealmu1 小时前
知识蒸馏(KD)详解一:认识一下BERT 模型
人工智能·深度学习·bert
Cathyqiii1 小时前
生成对抗网络(GAN)
人工智能·深度学习·计算机视觉
ai产品老杨2 小时前
打通各大芯片厂商相互间的壁垒,省去繁琐重复的适配流程的智慧工业开源了
人工智能·开源·音视频·能源
小陈phd3 小时前
高级RAG策略学习(五)——llama_index实现上下文窗口增强检索RAG
人工智能
凯禾瑞华养老实训室5 小时前
人才教育导向下:老年生活照护实训室助力提升学生老年照护服务能力
人工智能
湫兮之风6 小时前
Opencv: cv::LUT()深入解析图像块快速查表变换
人工智能·opencv·计算机视觉
Christo36 小时前
TFS-2018《On the convergence of the sparse possibilistic c-means algorithm》
人工智能·算法·机器学习·数据挖掘