1、用开源库
python
import fasttext
# 准备训练数据
# 数据应该是一个文本文件,其中每一行表示一个样本,每行以一个标签开头,然后是文本内容。
# 标签的格式为:__label__<your-label>,例如:__label__positive I love this movie!
train_data = 'path/to/your/training/data.txt'
# 训练模型
model = fasttext.train_supervised(train_data)
# 保存模型
model.save_model('fasttext_model.bin')
# 加载模型
model = fasttext.load_model('fasttext_model.bin')
# 使用模型进行预测
text = 'This is an example sentence.'
prediction = model.predict(text)
print(f'Text: {text}')
print(f'Prediction: {prediction}')
# 计算模型在测试数据上的精度
test_data = 'path/to/your/test/data.txt'
result = model.test(test_data)
print(f'Precision: {result[1]}')
print(f'Recall: {result[2]}')
2、用TensorFlow
python
import tensorflow as tf
import numpy as np
import re
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
def tokenize(text):
return re.findall(r'\w+', text.lower())
def preprocess_data(data):
sentences = []
labels = []
for line in data:
label, text = line.split(' ', 1)
sentences.append(tokenize(text))
labels.append(label)
return sentences, labels
def build_vocab(sentences, min_count=5):
word_counts = defaultdict(int)
for sentence in sentences:
for word in sentence:
word_counts[word] += 1
vocab = {word: idx for idx, (word, count) in enumerate(word_counts.items()) if count >= min_count}
return vocab
def sentence_to_vector(sentence, vocab):
vector = np.zeros(len(vocab))
for word in sentence:
if word in vocab:
vector[vocab[word]] += 1
return vector
# 示例数据
data = [
"__label__positive I love this movie!",
"__label__negative This movie is terrible!",
"__label__positive This is a great film.",
"__label__negative I didn't enjoy the movie."
]
sentences, labels = preprocess_data(data)
vocab = build_vocab(sentences)
label_encoder = LabelEncoder().fit(labels)
X = np.array([sentence_to_vector(sentence, vocab) for sentence in sentences])
y = label_encoder.transform(labels)
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 创建模型
model = tf.keras.Sequential([
tf.keras.layers.Dense(len(set(labels)), input_shape=(len(vocab),), activation='softmax')
])
# 编译模型
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
# 训练模型
model.fit(X_train, y_train, epochs=10, validation_data=(X_test, y_test))
# 预测
test_sentence = "This is an amazing movie!"
prediction = model.predict(np.array([sentence_to_vector(tokenize(test_sentence), vocab)]))
predicted_label = label_encoder.inverse_transform([np.argmax(prediction)])
print(f'Text: {test_sentence}')
print(f'Prediction: {predicted_label}')
# 评估
y_pred = model.predict(X_test)
y_pred = label_encoder.inverse_transform(np.argmax(y_pred, axis=1))
y_true = label_encoder.inverse_transform(y_test)
print(classification_report(y_true, y_pred))
3、用python实现
python
import numpy as np
import re
from collections import defaultdict
from sklearn.preprocessing import normalize
from sklearn.metrics import classification_report
def tokenize(text):
return re.findall(r'\w+', text.lower())
def preprocess_data(data):
sentences = []
labels = []
for line in data:
label, text = line.split(' ', 1)
sentences.append(tokenize(text))
labels.append(label)
return sentences, labels
def build_vocab(sentences, min_count=5):
word_counts = defaultdict(int)
for sentence in sentences:
for word in sentence:
word_counts[word] += 1
vocab = {word: idx for idx, (word, count) in enumerate(word_counts.items()) if count >= min_count}
return vocab
def build_label_index(labels):
label_index = {}
for label in labels:
if label not in label_index:
label_index[label] = len(label_index)
return label_index
def sentence_to_vector(sentence, vocab):
vector = np.zeros(len(vocab))
for word in sentence:
if word in vocab:
vector[vocab[word]] += 1
return vector
def train_fasttext(sentences, labels, vocab, label_index, lr=0.01, epochs=10):
W = np.random.randn(len(label_index), len(vocab))
for epoch in range(epochs):
for sentence, label in zip(sentences, labels):
vector = sentence_to_vector(sentence, vocab)
scores = W.dot(vector)
probs = np.exp(scores) / np.sum(np.exp(scores))
target = np.zeros(len(label_index))
target[label_index[label]] = 1
W -= lr * np.outer(probs - target, vector)
return W
def predict_fasttext(sentence, W, vocab, label_index):
vector = sentence_to_vector(sentence, vocab)
scores = W.dot(vector)
probs = np.exp(scores) / np.sum(np.exp(scores))
max_index = np.argmax(probs)
return list(label_index.keys())[list(label_index.values()).index(max_index)]
# 示例数据
data = [
"__label__positive I love this movie!",
"__label__negative This movie is terrible!",
"__label__positive This is a great film.",
"__label__negative I didn't enjoy the movie."
]
sentences, labels = preprocess_data(data)
vocab = build_vocab(sentences)
label_index = build_label_index(labels)
# 训练模型
W = train_fasttext(sentences, labels, vocab, label_index)
# 预测
test_sentence = "This is an amazing movie!"
prediction = predict_fasttext(tokenize(test_sentence), W, vocab, label_index)
print(f'Text: {test_sentence}')
print(f'Prediction: {prediction}')
# 评估
y_true = labels
y_pred = [predict_fasttext(sentence, W, vocab, label_index) for sentence in sentences]
print(classification_report(y_true, y_pred))