Kafka 保证消息消费全局顺序性

当有消息被生产出来的时候,如果没有指定分区或者指定 key ,那么消费会按照【轮询】的方式均匀地分配到所有可用分区中,但不一定按照分区顺序来分配

我们知道,在 Kafka 中消费者可以订阅一个或多个主题,并被分配一个或多个分区

如果一个消费者消费了多个分区,某些场景下消费者需要顺序地消费消息,但消息并不是按照顺序分配给分区的,所以就不一定能够保证消息消费的全局顺序性

比如下图中 Msg0002 消息并不是在 Msg0001 消息之后的,就有可能导致消费者先把 Msg0002 消息给消费, Msg0001 消息才被消费

那么这种情况该怎么解决?**如何尽可能地保证消息消费的全局顺序性?(即这些消息具有因果关系)**要想消费消息 B 必须先消费消息 A

要注意的是,Kafka 的设计目标是提供高吞吐量和低延迟,而不是强制保证全局有序性

所以这篇文章探讨的是需要强调全局顺序性场景下的 Kafka 应用

单分区

最简单粗暴的方法,虽然 Kafka 不能保证全局消费顺序性,但是能够保证分区内的消息顺序性

所以我们可以只创建一个分区,并让消费者消费这个分区,这样就能够保证消费的消息是有序的

但是这样做大大降低了吞吐量和处理效率,容易使得性能出现瓶颈

基于 key

在 Kafka 中,基于 key 的消息分配策略是通过消息中的键(key)来确定消息发送到哪个分区

当生产者发送消息时,可以指定一个键(key),Kafka 使用这个键通过哈希算法来确定消息被发送到哪个分区

由于相同的 key 就发送到同一分区,这样就能够保证了消费的消息是有序的

然而,如果只有一个消费者消费相同 key 的消息,那么与单分区相比,基于 key 的消息分配策略不会提高吞吐量

因为即使相同 key 的消息在多个分区中,但同一消费者依然只能从一个分区中消费,这并不会增加整体的处理能力。

但如果有多个消费者消费相同 key 的消息,基于 key 的分区策略可以提高消费者并行消费的能力

因为这些消费者可以同时从不同分区中读取消息,从而增加整体的处理速度。这种情况下,基于 key 的消息分配可以提高整体吞吐量

最后总结一下:

  • Kafka 的设计目标是提供高吞吐量和低延迟,而不是强制保证全局有序性,所以Kafka使用多分区的概念,并且只保证单分区有序

  • 如果想要实现消息的全局有序

    • 单分区策略:

      一个主题下只创建一个分区,一个消费者只消费一个分区,但这样做毫无并发性可言,极大降低系统性能

    • 基于 key 的消息分配策略:

      由于相同的 key 就发送到同一分区,这样就能够保证了消费的消息是有序的。然而,如果只有一个消费者消费相同 key 的消息,与前面单分区相比没有什么区别

相关推荐
沙滩de流沙3 分钟前
Hadoop生态
大数据·hadoop·分布式
web130933203981 小时前
flume对kafka中数据的导入导出、datax对mysql数据库数据的抽取
数据库·kafka·flume
luoganttcc6 小时前
[源码解析] 模型并行分布式训练Megatron (2) --- 整体架构
分布式·架构·大模型
张铁铁是个小胖子15 小时前
消息中间件RabbitMQ和kafka
分布式·kafka·rabbitmq
神秘打工猴15 小时前
Spark任务的执⾏流程
大数据·分布式·spark
白露与泡影15 小时前
Redisson分布式锁的源码解读
分布式·wpf
RodrickOMG17 小时前
【大数据】Hadoop三节点集群搭建
大数据·hadoop·分布式
乄北城以北乀17 小时前
第1章 R语言中的并行处理入门
开发语言·分布式·r语言
customer0818 小时前
【开源免费】基于SpringBoot+Vue.JS安康旅游网站(JAVA毕业设计)
java·vue.js·spring boot·后端·kafka·开源·旅游
得谷养人1 天前
flink-1.16 table sql 消费 kafka 数据,指定时间戳位置消费数据报错:Invalid negative offset 问题解决
sql·flink·kafka