巨擘OpenMMLab将开源综合音频生成项目:Amphion

项目地址:https://github.com/open-mmlab/Amphion

TTS: Text-to-Speech

Amphion achieves state-of-the-art performance when compared with existing open-source repositories on text-to-speech (TTS) systems. It supports the following models or architectures:

  • FastSpeech2: A non-autoregressive TTS architecture that utilizes feed-forward Transformer blocks.

  • VITS: An end-to-end TTS architecture that utilizes conditional variational autoencoder with adversarial learning

  • Vall-E: A zero-shot TTS architecture that uses a neural codec language model with discrete codes.

  • NaturalSpeech2: An architecture for TTS that utilizes a latent diffusion model to generate natural-sounding voices.

SVC: Singing Voice Conversion

  • Ampion supports multiple content-based features from various pretrained models, including WeNet, Whisper, and ContentVec. Their specific roles in SVC has been investigated in our NeurIPS 2023 workshop paper.

  • Amphion implements several state-of-the-art model architectures, including diffusion-, transformer-, VAE- and flow-based models. The diffusion-based architecture uses Bidirectional dilated CNN as a backend and supports several sampling algorithms such as DDPM, DDIM, and PNDM. Additionally, it supports single-step inference based on the Consistency Model.

TTA: Text-to-Audio

Amphion supports the TTA with a latent diffusion model. It is designed like AudioLDM Make-an-Audio and AUDIT. It is also the official implementation of the text-to-audio generation part of our NeurIPS 2023 paper.

Vocoder

  • Amphion supports various widely-used neural vocoders, including:

    • GAN-based vocoders: MelGAN, HiFi-GAN, NSF-HiFiGAN, BigVGAN, APNet.

    • Flow-based vocoders: WaveGlow.

    • Diffusion-based vocoders: Diffwave.

    • Auto-regressive based vocoders: WaveNet, WaveRNN.

  • Amphion provides the official implementation of Multi-Scale Constant-Q Transfrom Discriminator. It can be used to enhance any architecture GAN-based vocoders during training, and keep the inference stage (such as memory or speed) unchanged.

Evaluation

Amphion provides a comprehensive objective evaluation of the generated audio. The evaluation metrics contain:

  • F0 Modeling: F0 Pearson Coefficients, F0 Periodicity Root Mean Square Error, F0 Root Mean Square Error, Voiced/Unvoiced F1 Score, etc.

  • Energy Modeling: Energy Root Mean Square Error, Energy Pearson Coefficients, etc.

  • Intelligibility: Character/Word Error Rate, which can be calculated based on Whisper and more.

  • Spectrogram Distortion: Frechet Audio Distance (FAD), Mel Cepstral Distortion (MCD), Multi-Resolution STFT Distance (MSTFT), Perceptual Evaluation of Speech Quality (PESQ), Short Time Objective Intelligibility (STOI), etc.

  • Speaker Similarity: Cosine similarity, which can be calculated based on RawNet3, WeSpeaker, and more.

Datasets

Amphion unifies the data preprocess of the open-source datasets including AudioCaps, LibriTTS, LJSpeech, M4Singer, Opencpop, OpenSinger, SVCC, VCTK, and more. The supported dataset list can be seen here (updating).

📀 Installation

复制代码
git clone https://github.com/open-mmlab/Amphion.git
cd Amphion

# Install Python Environment
conda create --name amphion python=3.9.15
conda activate amphion

# Install Python Packages Dependencies
sh env.sh

🐍 Usage in Python

We detail the instructions of different tasks in the following recipes:

  • Text-to-Speech (TTS)

  • Singing Voice Conversion (SVC)

  • Text-to-Audio (TTA)

  • Vocoder

  • Evaluation

🙏 Acknowled

  • ming024's FastSpeech2 and jaywalnut310's VITS for model architecture code.

  • lifeiteng's VALL-E for training pipeline and model architecture design.

  • WeNet, Whisper, ContentVec, and RawNet3 for pretrained models and inference code.

  • HiFi-GAN for GAN-based Vocoder's architecture design and training strategy.

  • Encodec for well-organized GAN Discriminator's architecture and basic blocks.

  • Latent Diffusion for model architecture design.

  • TensorFlowTTS for preparing the MFA tools.

©️ License

Amphion is under the MIT License. It is free for both research and commercial use cases.

📚 Citations

Stay tuned, Coming soon!

相关推荐
晚霞的不甘43 分钟前
Flutter for OpenHarmony 可视化教学:A* 寻路算法的交互式演示
人工智能·算法·flutter·架构·开源·音视频
听麟1 小时前
HarmonyOS 6.0+ 跨端智慧政务服务平台开发实战:多端协同办理与电子证照管理落地
笔记·华为·wpf·音视频·harmonyos·政务
晚霞的不甘2 小时前
Flutter for OpenHarmony 实现计算几何:Graham Scan 凸包算法的可视化演示
人工智能·算法·flutter·架构·开源·音视频
零一iTEM3 小时前
MAX98357A_音频输出测试
单片机·嵌入式硬件·开源·音视频·硬件工程
Android系统攻城狮4 小时前
Android16进阶之获取播放位置MediaPlayer.getCurrentPosition调用流程与实战(二百二十八)
音视频·android16·音频进阶·音频性能实战
愚公搬代码6 小时前
【愚公系列】《AI短视频创作一本通》020-AI短视频创作实例精解(文旅宣传AI短视频实例精解)
人工智能·音视频
有位神秘人6 小时前
Android获取设备中本地音频
android·音视频
硫酸锌016 小时前
使用ffmpeg合并文件夹内的所有*.mp4格式视频
ffmpeg·音视频
源文雨6 小时前
shell调用ffmpeg递归转换所有wav至flac的脚本
ffmpeg·bash·音视频·音频·unix·shell·音频编码
愚公搬代码6 小时前
【愚公系列】《AI短视频创作一本通》019-AI语音及音乐的创作(AI短视频语音创作实例)
人工智能·音视频