LeetCode //C - 64. Minimum Path Sum

64. Minimum Path Sum

Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right, which minimizes the sum of all numbers along its path.

Note: You can only move either down or right at any point in time.

Example 1:

Input: grid = [[1,3,1],[1,5,1],[4,2,1]]
Output: 7
Explanation: Because the path 1 → 3 → 1 → 1 → 1 minimizes the sum.

Example 2:

Input: grid = [[1,2,3],[4,5,6]]
Output: 12

Constraints:
  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 200
  • 0 <= grid[i][j] <= 200

From: LeetCode

Link: 64. Minimum Path Sum


Solution:

Ideas:

This function assumes that the memory for grid has already been allocated and that gridSize and gridColSize are correctly set to reflect the dimensions of grid. The min function is a helper to find the minimum of two numbers.

The function calculates the minimum path sum in a bottom-up manner, filling in the dp table from the top-left to the bottom-right. After calculating the minimum path sum, it cleans up the allocated memory for dp and returns the result.

Code:
c 复制代码
int minPathSum(int** grid, int gridSize, int* gridColSize) {
    // The gridSize is the number of rows, and gridColSize[0] is the number of columns.
    int i, j;
    
    // Allocate space for the dp matrix
    int **dp = (int **)malloc(gridSize * sizeof(int *));
    for(i = 0; i < gridSize; i++) {
        dp[i] = (int *)malloc(gridColSize[0] * sizeof(int));
    }
    
    // Initialize the top-left corner
    dp[0][0] = grid[0][0];
    
    // Fill the first row (only right moves are possible)
    for(j = 1; j < gridColSize[0]; j++) {
        dp[0][j] = dp[0][j - 1] + grid[0][j];
    }
    
    // Fill the first column (only down moves are possible)
    for(i = 1; i < gridSize; i++) {
        dp[i][0] = dp[i - 1][0] + grid[i][0];
    }
    
    // Fill the rest of the dp matrix
    for(i = 1; i < gridSize; i++) {
        for(j = 1; j < gridColSize[0]; j++) {
            dp[i][j] = grid[i][j] + min(dp[i - 1][j], dp[i][j - 1]);
        }
    }
    
    // The bottom-right corner has the result
    int result = dp[gridSize - 1][gridColSize[0] - 1];
    
    // Free the dp matrix
    for(i = 0; i < gridSize; i++) {
        free(dp[i]);
    }
    free(dp);
    
    return result;
}

// Helper function to find the minimum of two numbers
int min(int a, int b) {
    return (a < b) ? a : b;
}
相关推荐
Georgewu10 小时前
【AI大模型入门指南】提示词Prompt工程详解
算法·aigc·ai编程
ZackSock16 小时前
Policy Gradient 极简教程
算法
Big_Yellow_J16 小时前
深入浅出了解生成模型-3:Diffusion模型原理以及代码
算法·面试
ZackSock17 小时前
从零实现 RAG
算法
Jolyne_17 小时前
前端常用的树处理方法总结
前端·算法·面试
前端付豪20 小时前
微信视频号推荐系统揭秘:兴趣建模、多模态分析与亿级流控架构实战
前端·后端·算法
木杉苑20 小时前
快速幂算法
算法
-qOVOp-1 天前
408第一季 - 数据结构 - 排序II
数据结构·算法·排序算法
小胖同学~1 天前
快速入门数据结构--栈
算法
C++ 老炮儿的技术栈1 天前
VSCode -配置为中文界面
大数据·c语言·c++·ide·vscode·算法·编辑器