LeetCode //C - 64. Minimum Path Sum

64. Minimum Path Sum

Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right, which minimizes the sum of all numbers along its path.

Note: You can only move either down or right at any point in time.

Example 1:

Input: grid = [[1,3,1],[1,5,1],[4,2,1]]
Output: 7
Explanation: Because the path 1 → 3 → 1 → 1 → 1 minimizes the sum.

Example 2:

Input: grid = [[1,2,3],[4,5,6]]
Output: 12

Constraints:
  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 200
  • 0 <= grid[i][j] <= 200

From: LeetCode

Link: 64. Minimum Path Sum


Solution:

Ideas:

This function assumes that the memory for grid has already been allocated and that gridSize and gridColSize are correctly set to reflect the dimensions of grid. The min function is a helper to find the minimum of two numbers.

The function calculates the minimum path sum in a bottom-up manner, filling in the dp table from the top-left to the bottom-right. After calculating the minimum path sum, it cleans up the allocated memory for dp and returns the result.

Code:
c 复制代码
int minPathSum(int** grid, int gridSize, int* gridColSize) {
    // The gridSize is the number of rows, and gridColSize[0] is the number of columns.
    int i, j;
    
    // Allocate space for the dp matrix
    int **dp = (int **)malloc(gridSize * sizeof(int *));
    for(i = 0; i < gridSize; i++) {
        dp[i] = (int *)malloc(gridColSize[0] * sizeof(int));
    }
    
    // Initialize the top-left corner
    dp[0][0] = grid[0][0];
    
    // Fill the first row (only right moves are possible)
    for(j = 1; j < gridColSize[0]; j++) {
        dp[0][j] = dp[0][j - 1] + grid[0][j];
    }
    
    // Fill the first column (only down moves are possible)
    for(i = 1; i < gridSize; i++) {
        dp[i][0] = dp[i - 1][0] + grid[i][0];
    }
    
    // Fill the rest of the dp matrix
    for(i = 1; i < gridSize; i++) {
        for(j = 1; j < gridColSize[0]; j++) {
            dp[i][j] = grid[i][j] + min(dp[i - 1][j], dp[i][j - 1]);
        }
    }
    
    // The bottom-right corner has the result
    int result = dp[gridSize - 1][gridColSize[0] - 1];
    
    // Free the dp matrix
    for(i = 0; i < gridSize; i++) {
        free(dp[i]);
    }
    free(dp);
    
    return result;
}

// Helper function to find the minimum of two numbers
int min(int a, int b) {
    return (a < b) ? a : b;
}
相关推荐
晨曦(zxr_0102)15 分钟前
CSP-X 2024 复赛编程题全解(B4104+B4105+B4106+B4107)
数据结构·c++·算法
ai安歌15 分钟前
【Rust编程:从新手到大师】 Rust 控制流深度详解
开发语言·算法·rust
Shinom1ya_17 分钟前
算法 day 36
算法
·白小白18 分钟前
力扣(LeetCode) ——15.三数之和(C++)
c++·算法·leetcode
海琴烟Sunshine20 分钟前
leetcode 268. 丢失的数字 python
python·算法·leetcode
CL.LIANG23 分钟前
视觉SLAM前置知识:相机模型
数码相机·算法
无限进步_40 分钟前
深入理解C语言scanf函数:从基础到高级用法完全指南
c语言·开发语言·c++·后端·算法·visual studio
Lei_3359671 小时前
[算法]十大排序
数据结构·算法·排序算法
yuuki2332331 小时前
【数据结构】顺序表+回调函数
c语言·数据结构·后端
大数据张老师1 小时前
数据结构——堆排序
数据结构·算法·排序算法