【C++高阶(六)】哈希的应用--位图&布隆过滤器

💓博主CSDN主页:杭电码农-NEO💓

⏩专栏分类:C++从入门到精通

🚚代码仓库:NEO的学习日记🚚

🌹关注我🫵带你学习C++

🔝🔝


哈希的应用

  • [1. 前言](#1. 前言)
  • [2. 位图的概念以及定义](#2. 位图的概念以及定义)
  • [3. 位图的模拟实现](#3. 位图的模拟实现)
  • [4. 布隆过滤器的概念以及定义](#4. 布隆过滤器的概念以及定义)
  • [5. 布隆过滤器模拟实现(一)](#5. 布隆过滤器模拟实现(一))
  • [6. 布隆过滤器模拟实现(二)](#6. 布隆过滤器模拟实现(二))
  • [7. 处理海量数据的面试题](#7. 处理海量数据的面试题)
  • [8. 总结](#8. 总结)

1. 前言

哈希最常用的应用是unordered

系列的容器,但是当面对海量数据

如100亿个数据中找有没有100这

个数时,使用无序容器的话内存放不下

所以哈希思想还有别的更重要的应用!

本章重点:

本篇文章着重讲解哈希的应用的
两个容器,一个是位图,一个是布隆
过滤器,并且模拟实现它们.最后会
讲解如何使用这两个容器来解决一
些海量数据的面试题问题


2. 位图的概念以及定义

请先看一道海量数据的面试题:

如果要使用unordered_set来解决
40亿个整数,一个整数占4四节,
总共大约占16个G的内存空间
并且set容器中不止有整型数据,还有
其他的数据,所以不能用set!

而一个数在或不在可以用1/0来表示

也就是说其实只需要一个比特位就可

以知道一个数在不在其中.

于是位图横空出世!

位图概念:

所谓位图,就是用每一位来存放某种状态,适用于海量数据,数据无重复的场景。通常是用来判断某个数据存不存在的

举例说明:

判断1~22中哪些数据是存在的
只需要用三个整型也就是24个
比特位的空间,同理,40亿个数据
也用不着16G的内存,使用0.5G
内存的位图即可判断一个数在不在!


3. 位图的模拟实现

先来看看库中实现的位图:

模板参数N代表位图的大小

位图有三个主要的接口函数:

  1. set: 将一个数据放入位图中
  2. reset:将一个数据从位图中删掉
  3. test:检测一个数据在不在位图中

位图本身就是一段连续的空间
所以用char类型数组来充当位图的
基本结构是很符合情况的!

先将位图框架写出来:

cpp 复制代码
template<size_t N>//N是所有数中的最大值
class bit_set
{
public:
	bit_set()
	{
		_bit.resize(N / 8 + 1, 0);
	}
	void set(size_t x)//将第x位变成1
	{}
	void reset(size_t x)//将第x位由1变0
	{}
	bool test(size_t x)
	{}
private:
	vector<char> _bit;
};

在写set,reset等函数时,要先清除一点,
那就是char类型的数组一个元素有八个
比特位,所以我们需要确定两个位置:
一是此数据在哪一个数组元素中
二是此数据对应此元素的第几个比特位
下面我们画个图来推导一下公式:

现在已经能准确的找到这个比特位了
那么怎样将这个比特位变成0/1并且
不会影响到其他的比特位呢?下面分享
两个很巧妙的方法,请大家细细品尝:

cpp 复制代码
template<size_t N>//N是所有数中的最大值
class bit_set
{
public:
	bit_set()
	{
		_bit.resize(N / 8 + 1, 0);
	}
	void set(size_t x)//将第x位变成1
	{
		//x/8->在第几个char
		//x%8->在这个char的第几个比特位
		size_t i = x / 8;
		size_t j = x % 8;
		_bit[i] |= (1 << j);//将x对应的比特位变成1
	}
	void reset(size_t x)
	{
		size_t i = x / 8;
		size_t j = x % 8;
		_bit[i] &= ~(1 << j);//将x对应的比特位变成0
	}
	bool test(size_t x)
	{
		size_t i = x / 8;
		size_t j = x % 8;
		return _bit[i] & (1 << j);
	}
private:
	vector<char> _bit;
};

关于代码的解释都在注释中,请耐心观看
必要时可以自己画图做做试验


4. 布隆过滤器的概念以及定义

位图有一个缺陷,那就是只能判断整型是否存在

遇见字符串等类型的数据就很难处理了

布隆过滤器的提出:


布隆过滤器的概念:

布隆过滤器是由布隆在1970年提出的 一种紧凑型的、比较巧妙的概率型数据结构,特点是高效地插入和查询,可以用来告诉你 "某样东西一定不存在或者可能存在",它是用多个哈希函数,将一个数据映射到位图结构中。此种方式不仅可以提升查询效率,也可以节省大量的内存空间

举例说明:


查找字符"美团"是否存在时,会找到
这三个绿色的位置,看看是否都为1

布隆过滤器的拓展阅读:

布隆过滤器原理


5. 布隆过滤器模拟实现(一)

首先,布隆过滤器的底层也是位图,所以

只需封装一层即可实现一个布隆过滤器!

但实现布隆过滤器的关键有以下几个

  • 一个字符串映射几个位置?
  • 怎样把字符串转换为整数?

一般而言,一个字符串映射的越多,那么
误判率就越低,但是映射过多会导致不同
的字符串映射到相同的位置,所以一般映射
三个位置,并且将字符串转换为整数也就
需要三种不同的方法,我在网上找了一些
字符串转整数的算法,请看下面的代码:

cpp 复制代码
//三个不同的字符串映射成整数的函数
struct HashBKDR
{
	size_t operator()(const string& key)
	{
		size_t val = 0;
		for (auto ch : key)
		{
			val *= 131;
			val += ch;
		}
		return val;
	}
};
struct HashAP
{
	size_t operator()(const string& key)
	{
		size_t hash = 0;
		for (size_t i = 0; i < key.size(); i++)
		{
			if ((i & 1) == 0)
				hash ^= ((hash << 7) ^ key[i] ^ (hash >> 3));
			else
				hash ^= (~((hash << 11) ^ key[i] ^ (hash >> 5)));
		}
		return hash;
	}
};
struct HashDJB
{
	size_t operator()(const string& key)
	{
		size_t hash = 5381;
		for (auto ch : key)
			hash += (hash << 5) + ch;
		return hash;
	}
};

将这三个仿函数传入类,用于字符串转整型

布隆过滤器的实现:

cpp 复制代码
// N表示准备要映射N个值
template<size_t N,
	class K = string, class Hash1 = HashBKDR, class Hash2 = HashAP, class Hash3 = HashDJB>
class Bloom_Filter
{
public:
	void set(const K& key)
	{
		size_t hash1 = Hash1()(key) % (_ratio * N);
		_bits->set(hash1);
		size_t hash2 = Hash2()(key) % (_ratio * N);
		_bits->set(hash2);
		size_t hash3 = Hash3()(key) % (_ratio * N);
		_bits->set(hash3);
	}

	bool test(const K& key)
	{
		size_t hash1 = Hash1()(key) % (_ratio * N);
		if (!_bits->test(hash1))
			return false; // 准确的
		size_t hash2 = Hash2()(key) % (_ratio * N);
		if (!_bits->test(hash2))
			return false; // 准确的
		size_t hash3 = Hash3()(key) % (_ratio * N);
		if (!_bits->test(hash3))
			return false;  // 准确的
		return true; // 可能存在误判
	}

	void reset(const K& key)//支持删除操作的话,可能会把其他数据对应的映射值删除
	{}
private:
	const static size_t _ratio = 5;//开的空间越大,误判率越小
	std::bitset<_ratio* N>* _bits = new std::bitset<_ratio * N>;//标准库中的位图是在栈上开辟的静态数组,过大会栈溢出
};

6. 布隆过滤器模拟实现(二)

布隆过滤器的查找是一个很玄幻的过程:

分别计算每个哈希值对应的比特位置存储的是否为零,只要有一个为零,代表该元素一定不在哈希表中,否则可能在哈希表中

因为哈希函数可能存在冲突的原因,如下:


所以我们得出一个结论:

  • 布隆过滤器说一个元素存在,那它可能存在
  • 布隆过滤器说一个元素不在,那它一定不在

布隆过滤器的删除操作:

如果你理解了上面的内容,你一定能
明白布隆过滤器是不支持删除的,因为
删除一个关键字时可能将其他的关键字
的一部分也给删除了,因为一个bit位
只能存储一个二进制信息!


7. 处理海量数据的面试题

海量数据的处理,有对位图的应用

也有对布隆过滤器的应用一步一步解析

位图的应用:

  1. 给100亿个整数,设法找到只出现一次的整数?
  2. 给两个文件,分别有100亿个整数,只有1G内存,如何找到两个文件交集?
  3. 位图应用变形:一个文件有100亿个int,1G内存,设法找到出现次数不超过2次的所有整数

布隆过滤器的应用:

  1. 给两个文件,分别有100亿个query,我们只有1G内存,如何找到两个文件交集?分别给出精确算法和近似算法
  2. 如何扩展BloomFilter使得它支持删除元素的操作

这些问题大家可以下来想一想,有什么问题欢迎私信


8. 总结

讲到这里,哈希的所有内容就已经

讲完了,所以无脑哈希无脑哈希,

但实际上要学好哈希还真得费点脑子

海量数据得处理问题在面试时也是

经常问的,希望同学们好好学扎实!


🔎 下期预告:C++11新改动🔍

相关推荐
XiaoLeisj8 分钟前
【递归,搜索与回溯算法 & 综合练习】深入理解暴搜决策树:递归,搜索与回溯算法综合小专题(二)
数据结构·算法·leetcode·决策树·深度优先·剪枝
yuyanjingtao23 分钟前
CCF-GESP 等级考试 2023年9月认证C++四级真题解析
c++·青少年编程·gesp·csp-j/s·编程等级考试
闻缺陷则喜何志丹38 分钟前
【C++动态规划 图论】3243. 新增道路查询后的最短距离 I|1567
c++·算法·动态规划·力扣·图论·最短路·路径
charlie1145141911 小时前
C++ STL CookBook
开发语言·c++·stl·c++20
小林熬夜学编程1 小时前
【Linux网络编程】第十四弹---构建功能丰富的HTTP服务器:从状态码处理到服务函数扩展
linux·运维·服务器·c语言·网络·c++·http
倔强的石头1061 小时前
【C++指南】类和对象(九):内部类
开发语言·c++
Jackey_Song_Odd1 小时前
C语言 单向链表反转问题
c语言·数据结构·算法·链表
乐之者v1 小时前
leetCode43.字符串相乘
java·数据结构·算法
A懿轩A2 小时前
C/C++ 数据结构与算法【数组】 数组详细解析【日常学习,考研必备】带图+详细代码
c语言·数据结构·c++·学习·考研·算法·数组
机器视觉知识推荐、就业指导2 小时前
C++设计模式:享元模式 (附文字处理系统中的字符对象案例)
c++