mac M系列芯片安装chatGLM3-6b模型

1 环境安装

1.1 mac安装conda.

下载miniconda,并安装

复制代码
curl -O https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-arm64.sh
sh Miniconda3-latest-MacOSX-arm64.sh

1.2 创建虚拟环境并激活

创建名为chatglm3的虚拟环境,python版本为3.10.2

激活环境(后续要在这个环境安装pytorch及依赖包)

复制代码
conda create -n chatglm3 python==3.10.2
conda activate chatglm3

1.3 安装pytorch-nightly

复制代码
conda install pytorch torchvision torchaudio -c pytorch-nightly

1.4 下载chatglm3 代码

1 下载地址,git地址:https://github.com/THUDM/ChatGLM3

2 进入代码中,安装依赖包

复制代码
git clone https://github.com/THUDM/ChatGLM3
cd ChatGLM3-main
pip install -r requirement.txt

2 模型下载

推荐使用方式3下载,可以下载任意开源大模型,且速度飞快,没有墙限制

方式1: 直接在huggingface官网下载(国内比较难)

https://huggingface.co/dwdcth/chatglm3-6b-int4

方式2 使用国内镜像

https://hf-mirror.com/dwdcth/chatglm3-6b-int4

方式3

  • 使用modelscope下载

    https://modelscope.cn/models/ZhipuAI/chatglm3-6b/summary

  • 安装魔塔依赖

    pip install modelscope -U

  • 代码中的路径即为要下载的模型,可以自行选择模型下载(mac 16G推荐下载int4)

    model_dir = snapshot_download('ZhipuAI/chatglm3-6b', revision='v1.0.1')

  • 模型默认保存路径为家目录下, ~/.cache/modelscope/hub/ZhipuAI/ChatGLM3-6B/

    1 安装依赖
    pip install modelscope -U

    2 使用代码下载
    from modelscope import snapshot_download
    model_dir = snapshot_download("ZhipuAI/chatglm3-6b", revision = "v1.0.0")

3 模型使用

1 修改web_demo2.py中的device为"mps"

DEVICE = 'mps'

如果测试cli_demo.py文件,修改如下代码,模型需要时float()类型的,不然会报错。(不过好像还没有用到mps,待测试)

DEVICE = 'mps'

model = AutoModel.from_pretrained(TOKENIZER_PATH, trust_remote_code=True).float()

复制代码
# web_demo2.py 运行
streamlit run basic_demo/web_demo2.py 

4 模型web展示

streamlit run basic_demo/web_demo2.py

相关推荐
我就是全世界6 小时前
TensorRT-LLM:大模型推理加速的核心技术与实践优势
人工智能·机器学习·性能优化·大模型·tensorrt-llm
文浩(楠搏万)10 小时前
用OBS Studio录制WAV音频,玩转语音克隆和文本转语音!
大模型·音视频·tts·wav·obs·声音克隆·语音录制
Mr.zwX13 小时前
【大模型】到底什么是Function Calling和MCP,以及和ReAct推理的关系是什么?
大模型·mcp协议
李师兄说大模型17 小时前
KDD 2025 | 地理定位中的群体智能:一个多智能体大型视觉语言模型协同框架
人工智能·深度学习·机器学习·语言模型·自然语言处理·大模型·deepseek
Sherlock Ma17 小时前
百度开源文心一言4.5:论文解读和使用入门
人工智能·百度·自然语言处理·开源·大模型·文心一言·多模态
喜欢吃豆18 小时前
目前最火的agent方向-A2A快速实战构建(二): AutoGen模型集成指南:从OpenAI到本地部署的全场景LLM解决方案
后端·python·深度学习·flask·大模型
喜欢吃豆19 小时前
快速手搓一个MCP服务指南(九): FastMCP 服务器组合技术:构建模块化AI应用的终极方案
服务器·人工智能·python·深度学习·大模型·github·fastmcp
一 铭1 天前
AI领域新趋势:从提示(Prompt)工程到上下文(Context)工程
人工智能·语言模型·大模型·llm·prompt
静心问道1 天前
self-consistency:自洽性提升语言模型中的链式思维推理能力
人工智能·语言模型·大模型
胡耀超1 天前
标签体系设计与管理:从理论基础到智能化实践的综合指南
人工智能·python·深度学习·数据挖掘·大模型·用户画像·语义分析