Kafka的ACK应答级别

在 Kafka 中,ACK(Acknowledgement)应答级别是一个重要的概念,它决定了消息发送到 Kafka 集群后如何确认消息的成功存储。生产者可以根据需要设置不同的 ACK 级别,以在数据可靠性和传输效率之间做出权衡。以下是 Kafka 支持的三种主要 ACK 应答级别:

  1. ACK=0:

    • 生产者在消息发送后不会等待来自服务器的任何确认。
    • 这意味着生产者无法知道消息是否成功存储在 Kafka 集群中。
    • 这个级别提供了最高的吞吐量,但在可靠性方面是最低的,因为可能会丢失消息。
  2. ACK=1 :

    • 生产者会等待直到消息的领导者副本(Leader Replica)确认接收到消息。
    • 一旦领导者副本存储了消息,生产者会收到一个确认。
    • 这个级别在性能和数据可靠性之间提供了一个平衡。但如果领导者副本在确认后发生故障,而消息还未复制到追随者副本(Follower Replicas),则消息可能会丢失。
  3. ACK=allACK=-1(默认级别):

    • 生产者会等待消息被所有的同步副本(ISR, In-Sync Replicas)确认。
    • 这意味着只有当所有的同步副本都已经接收并存储了消息,生产者才会收到一个确认。
    • 这个级别提供了最高的数据可靠性,但可能会牺牲一些性能,因为需要等待所有副本的确认。

选择哪个 ACK 级别取决于具体的应用场景和对数据可靠性与处理吞吐量的需求。例如,对于那些要求高数据可靠性的关键任务应用,可以选择 ACK=all;而对于可以容忍少量数据丢失的场景,则可能选择 ACK=0,以获得更高的性能。

相关推荐
掘金-我是哪吒2 小时前
分布式微服务系统架构第156集:JavaPlus技术文档平台日更-Java线程池使用指南
java·分布式·微服务·云原生·架构
亲爱的非洲野猪3 小时前
Kafka消息积压的多维度解决方案:超越简单扩容的完整策略
java·分布式·中间件·kafka
活跃家族3 小时前
分布式压测
分布式
前端世界4 小时前
HarmonyOS开发实战:鸿蒙分布式生态构建与多设备协同发布全流程详解
分布式·华为·harmonyos
DavidSoCool5 小时前
RabbitMQ使用topic Exchange实现微服务分组订阅
分布式·微服务·rabbitmq
掘金-我是哪吒6 小时前
分布式微服务系统架构第158集:JavaPlus技术文档平台日更-JVM基础知识
jvm·分布式·微服务·架构·系统架构
东窗西篱梦7 小时前
Redis集群部署指南:高可用与分布式实践
数据库·redis·分布式
Acrel_Fanny7 小时前
Acrel-1000系列分布式光伏监控系统在湖北荆门一马光彩大市场屋顶光伏发电项目中应用
分布式
xufwind7 小时前
spark standlone 集群离线安装
大数据·分布式·spark
半新半旧8 小时前
Redis集群和 zookeeper 实现分布式锁的优势和劣势
redis·分布式·zookeeper