Kafka的ACK应答级别

在 Kafka 中,ACK(Acknowledgement)应答级别是一个重要的概念,它决定了消息发送到 Kafka 集群后如何确认消息的成功存储。生产者可以根据需要设置不同的 ACK 级别,以在数据可靠性和传输效率之间做出权衡。以下是 Kafka 支持的三种主要 ACK 应答级别:

  1. ACK=0:

    • 生产者在消息发送后不会等待来自服务器的任何确认。
    • 这意味着生产者无法知道消息是否成功存储在 Kafka 集群中。
    • 这个级别提供了最高的吞吐量,但在可靠性方面是最低的,因为可能会丢失消息。
  2. ACK=1 :

    • 生产者会等待直到消息的领导者副本(Leader Replica)确认接收到消息。
    • 一旦领导者副本存储了消息,生产者会收到一个确认。
    • 这个级别在性能和数据可靠性之间提供了一个平衡。但如果领导者副本在确认后发生故障,而消息还未复制到追随者副本(Follower Replicas),则消息可能会丢失。
  3. ACK=allACK=-1(默认级别):

    • 生产者会等待消息被所有的同步副本(ISR, In-Sync Replicas)确认。
    • 这意味着只有当所有的同步副本都已经接收并存储了消息,生产者才会收到一个确认。
    • 这个级别提供了最高的数据可靠性,但可能会牺牲一些性能,因为需要等待所有副本的确认。

选择哪个 ACK 级别取决于具体的应用场景和对数据可靠性与处理吞吐量的需求。例如,对于那些要求高数据可靠性的关键任务应用,可以选择 ACK=all;而对于可以容忍少量数据丢失的场景,则可能选择 ACK=0,以获得更高的性能。

相关推荐
徐先生 @_@|||3 小时前
Spark DataFrame常见的Transformation和Actions详解
大数据·分布式·spark
Gofarlic_oms14 小时前
通过Kisssoft API接口实现许可证管理自动化集成
大数据·运维·人工智能·分布式·架构·自动化
what丶k4 小时前
深度解析:以Kafka为例,消息队列消费幂等性的实现方案与生产实践
java·数据结构·kafka
走遍西兰花.jpg5 小时前
spark配置
大数据·分布式·spark
hellojackjiang20115 小时前
如何保障分布式IM聊天系统的消息可靠性(即消息不丢)
分布式·网络安全·架构·信息与通信
BYSJMG6 小时前
计算机毕业设计选题推荐:基于Hadoop的城市交通数据可视化系统
大数据·vue.js·hadoop·分布式·后端·信息可视化·课程设计
liux35286 小时前
Kafka 4.1.1 部署指南:单机版与安全认证配置
安全·kafka·linq
一只大袋鼠6 小时前
分布式 ID 生成:雪花算法原理、实现与 MyBatis-Plus 实战
分布式·算法·mybatis
三水不滴7 小时前
对比一下RabbitMQ和RocketMQ
经验分享·笔记·分布式·rabbitmq·rocketmq
麦兜*7 小时前
深入解析分布式数据库TiDB核心架构:基于Raft一致性协议与HTAP混合负载实现金融级高可用与实时分析的工程实践
数据库·分布式·tidb