Kafka的ACK应答级别

在 Kafka 中,ACK(Acknowledgement)应答级别是一个重要的概念,它决定了消息发送到 Kafka 集群后如何确认消息的成功存储。生产者可以根据需要设置不同的 ACK 级别,以在数据可靠性和传输效率之间做出权衡。以下是 Kafka 支持的三种主要 ACK 应答级别:

  1. ACK=0:

    • 生产者在消息发送后不会等待来自服务器的任何确认。
    • 这意味着生产者无法知道消息是否成功存储在 Kafka 集群中。
    • 这个级别提供了最高的吞吐量,但在可靠性方面是最低的,因为可能会丢失消息。
  2. ACK=1 :

    • 生产者会等待直到消息的领导者副本(Leader Replica)确认接收到消息。
    • 一旦领导者副本存储了消息,生产者会收到一个确认。
    • 这个级别在性能和数据可靠性之间提供了一个平衡。但如果领导者副本在确认后发生故障,而消息还未复制到追随者副本(Follower Replicas),则消息可能会丢失。
  3. ACK=allACK=-1(默认级别):

    • 生产者会等待消息被所有的同步副本(ISR, In-Sync Replicas)确认。
    • 这意味着只有当所有的同步副本都已经接收并存储了消息,生产者才会收到一个确认。
    • 这个级别提供了最高的数据可靠性,但可能会牺牲一些性能,因为需要等待所有副本的确认。

选择哪个 ACK 级别取决于具体的应用场景和对数据可靠性与处理吞吐量的需求。例如,对于那些要求高数据可靠性的关键任务应用,可以选择 ACK=all;而对于可以容忍少量数据丢失的场景,则可能选择 ACK=0,以获得更高的性能。

相关推荐
武子康25 分钟前
Java-72 深入浅出 RPC Dubbo 上手 生产者模块详解
java·spring boot·分布式·后端·rpc·dubbo·nio
橘子在努力4 小时前
【橘子分布式】Thrift RPC(理论篇)
分布式·网络协议·rpc
lifallen6 小时前
Kafka 时间轮深度解析:如何O(1)处理定时任务
java·数据结构·分布式·后端·算法·kafka
沈健_算法小生8 小时前
基于SpringBoot3集成Kafka集群
分布式·kafka·linq
Swift社区9 小时前
ELK、Loki、Kafka 三种日志告警联动方案全解析(附实战 Demo)
分布式·elk·kafka
鼠鼠我捏,要死了捏11 小时前
基于Redis Streams的实时消息处理实战经验分享
redis·消息队列·redis streams
chanalbert17 小时前
Nacos 技术研究文档(基于 Nacos 3)
spring boot·分布式·spring cloud
线条119 小时前
Spark 单机模式安装与测试全攻略
大数据·分布式·spark
C182981825751 天前
分布式ID 与自增区别
分布式
码字的字节1 天前
深入解析Hadoop架构设计:原理、组件与应用
大数据·hadoop·分布式·hadoop架构设计