Kafka的ACK应答级别

在 Kafka 中,ACK(Acknowledgement)应答级别是一个重要的概念,它决定了消息发送到 Kafka 集群后如何确认消息的成功存储。生产者可以根据需要设置不同的 ACK 级别,以在数据可靠性和传输效率之间做出权衡。以下是 Kafka 支持的三种主要 ACK 应答级别:

  1. ACK=0:

    • 生产者在消息发送后不会等待来自服务器的任何确认。
    • 这意味着生产者无法知道消息是否成功存储在 Kafka 集群中。
    • 这个级别提供了最高的吞吐量,但在可靠性方面是最低的,因为可能会丢失消息。
  2. ACK=1 :

    • 生产者会等待直到消息的领导者副本(Leader Replica)确认接收到消息。
    • 一旦领导者副本存储了消息,生产者会收到一个确认。
    • 这个级别在性能和数据可靠性之间提供了一个平衡。但如果领导者副本在确认后发生故障,而消息还未复制到追随者副本(Follower Replicas),则消息可能会丢失。
  3. ACK=allACK=-1(默认级别):

    • 生产者会等待消息被所有的同步副本(ISR, In-Sync Replicas)确认。
    • 这意味着只有当所有的同步副本都已经接收并存储了消息,生产者才会收到一个确认。
    • 这个级别提供了最高的数据可靠性,但可能会牺牲一些性能,因为需要等待所有副本的确认。

选择哪个 ACK 级别取决于具体的应用场景和对数据可靠性与处理吞吐量的需求。例如,对于那些要求高数据可靠性的关键任务应用,可以选择 ACK=all;而对于可以容忍少量数据丢失的场景,则可能选择 ACK=0,以获得更高的性能。

相关推荐
竟未曾年少轻狂8 小时前
Spring Boot 项目集成 Redis
java·spring boot·redis·缓存·消息队列·wpf·redis集群
打工的小王9 小时前
消息队列之Kafka(一)搭建服务
分布式·kafka
鸡蛋豆腐仙子10 小时前
redis及实现分布式锁的原理
java·redis·分布式·学习·缓存
DemonAvenger10 小时前
Kafka高可用设计揭秘:副本机制与选举策略的实践之道
性能优化·kafka·消息队列
蒸蒸yyyyzwd11 小时前
分布式学习笔记 p5-13
笔记·分布式·学习
好家伙VCC11 小时前
**发散创新:用 Rust构建多智能体系统,让分布式协作更高效**在人工智能快速演进的今天,**多智能体系统(
java·人工智能·分布式·python·rust
C澒11 小时前
从单体到分布式:SLDS 2.0 全球物流履约网络架构演进之路
前端·分布式·架构·系统架构·教育电商·交通物流
Jack_David11 小时前
kafka_2.13-4.1.1集群安装
java·分布式·kafka
愿你天黑有灯下雨有伞11 小时前
Spring Boot 整合 Kafka:生产环境标准配置与最佳实践
java·kafka
jiuweiC13 小时前
kafka重平衡问题-golang
分布式·golang·kafka