训练自己的个性化Stable diffusion模型,LORA

一、背景

需要训练自己的LORA模型

二、分析

1、有sd-webui有训练插件功能

2、有单独的LORA训练开源web界面

两个开源训练界面

1、秋叶写的SD-Trainer

https://github.com/Akegarasu/lora-scripts/ 没成功,主要也是cudnn和nvidia-smi中的CUDA版本不一致退出

2、Kohya's GUI

GitHub - bmaltais/kohya_ss 成功了

**遇到问题1,**cudnn和nvidia-smi中的CUDA版本不一致

解决方法:unset LD_LIBRARY_PATH解决了我的问题

问题2:报错量化错误

优化器Optimizer 选 :AdamW

三、步骤

1、下载代码

复制代码
git clone https://github.com/bmaltais/kohya_ss.git

2、有Python 3.10.8环境

复制代码
cd kohya_ss

chmod +x ./setup.sh

./setup.sh

./gui.sh --listen=0.0.0.0 --headless

不要自己去安装python包,巨坑。

3、准备数据

下载该数据

https://huggingface.co/datasets/lambdalabs/pokemon-blip-captions/tree/main

复制代码
#安装处理该数据的包
# pip install -i https://pypi.tuna.tsinghua.edu.cn/simple fastparquet
# pip install pyarrow

from fastparquet import ParquetFile
datadir = r'./'
filename = datadir + r'下载的数据.parquet'
pf = ParquetFile(filename)

dF = pf.to_pandas()

from PIL import Image
import io
import base64


# 将byte数据转换为PIL图像对象
def save_png(name,image_bytes):
    image = Image.open(io.BytesIO(image_bytes))

    # 保存图像到文件
    filename = 'lora_data/'+str(name)+'.jpg'
    print(filename)
    # 调整尺寸
    new_image = image.resize((512, 512))
    new_image.save(filename)
def save_txt(name,text):
    # text = "这是要保存的文本内容"
    filename = 'lora_data/'+str(name)+'.txt'
    with open(filename, 'w') as file:
        file.write(text)
保存数据的
for index, row in dF.iterrows():
    # print(index,row['text'],row['image.bytes']) # 输出列名
    save_txt(index,row['text'])
    save_png(index,row['image.bytes'])
    if index==20:
        break

4、创建数据目录

在kohya_ss项目下,创建一个train目录,具体内容如下:

image : 图片放在这里。

log:训练记录

model:模型保存路径

image目录还有一个子目录,比如本文这里是100_pokemon,100表示100个steps,会直接影响训练的步数和效果,pokemon表示图片人物名称。

5、训练

训练数据目录填 /home/.../image 不要写到/home/.../image/100_pokemon

基础模型写全/media/...../openjourney-v4.ckpt

一定可以训练成功的,有数据有模型有步骤,不清楚可以联系我

相关推荐
&星痕&几秒前
人工智能:深度学习:0.pytorch安装
人工智能·python·深度学习
AI猫站长几秒前
快讯|清华&上海期智研究院开源Project-Instinct框架,攻克机器人“感知-运动”割裂核心难题;灵心巧手入选毕马威中国“第二届智能制造科技50”榜单
人工智能·机器人·苹果·具身智能·project·灵心巧手
铁手飞鹰3 分钟前
[深度学习]常用的库与操作
人工智能·pytorch·python·深度学习·numpy·scikit-learn·matplotlib
power 雀儿4 分钟前
前馈网络+层归一化
人工智能·算法
数研小生6 分钟前
用爬虫数据训练 ChatGPT 行业知识库:从数据采集到模型微调的实战指南
人工智能·爬虫·chatgpt
Guheyunyi7 分钟前
什么是安全监测预警系统?应用场景有哪些?
大数据·运维·人工智能·安全·音视频
清 晨8 分钟前
AI 代理购物把“流量”变成“答案”,而“可信交付”决定你能不能被选中
大数据·人工智能·跨境电商·跨境·营销策略
Funny_AI_LAB15 分钟前
GLM-OCR发布:性能SOTA,超越PaddleOCR-VL-1.5?
人工智能·计算机视觉·语言模型·ocr
m0_6038887121 分钟前
Language Models Struggle to Use Representations Learned In-Context
人工智能·ai·语言模型·自然语言处理·论文速览
青春不朽51223 分钟前
PyTorch 入门指南:深度学习的瑞士军刀
人工智能·pytorch·深度学习