训练自己的个性化Stable diffusion模型,LORA

一、背景

需要训练自己的LORA模型

二、分析

1、有sd-webui有训练插件功能

2、有单独的LORA训练开源web界面

两个开源训练界面

1、秋叶写的SD-Trainer

https://github.com/Akegarasu/lora-scripts/ 没成功,主要也是cudnn和nvidia-smi中的CUDA版本不一致退出

2、Kohya's GUI

GitHub - bmaltais/kohya_ss 成功了

**遇到问题1,**cudnn和nvidia-smi中的CUDA版本不一致

解决方法:unset LD_LIBRARY_PATH解决了我的问题

问题2:报错量化错误

优化器Optimizer 选 :AdamW

三、步骤

1、下载代码

复制代码
git clone https://github.com/bmaltais/kohya_ss.git

2、有Python 3.10.8环境

复制代码
cd kohya_ss

chmod +x ./setup.sh

./setup.sh

./gui.sh --listen=0.0.0.0 --headless

不要自己去安装python包,巨坑。

3、准备数据

下载该数据

https://huggingface.co/datasets/lambdalabs/pokemon-blip-captions/tree/main

复制代码
#安装处理该数据的包
# pip install -i https://pypi.tuna.tsinghua.edu.cn/simple fastparquet
# pip install pyarrow

from fastparquet import ParquetFile
datadir = r'./'
filename = datadir + r'下载的数据.parquet'
pf = ParquetFile(filename)

dF = pf.to_pandas()

from PIL import Image
import io
import base64


# 将byte数据转换为PIL图像对象
def save_png(name,image_bytes):
    image = Image.open(io.BytesIO(image_bytes))

    # 保存图像到文件
    filename = 'lora_data/'+str(name)+'.jpg'
    print(filename)
    # 调整尺寸
    new_image = image.resize((512, 512))
    new_image.save(filename)
def save_txt(name,text):
    # text = "这是要保存的文本内容"
    filename = 'lora_data/'+str(name)+'.txt'
    with open(filename, 'w') as file:
        file.write(text)
保存数据的
for index, row in dF.iterrows():
    # print(index,row['text'],row['image.bytes']) # 输出列名
    save_txt(index,row['text'])
    save_png(index,row['image.bytes'])
    if index==20:
        break

4、创建数据目录

在kohya_ss项目下,创建一个train目录,具体内容如下:

image : 图片放在这里。

log:训练记录

model:模型保存路径

image目录还有一个子目录,比如本文这里是100_pokemon,100表示100个steps,会直接影响训练的步数和效果,pokemon表示图片人物名称。

5、训练

训练数据目录填 /home/.../image 不要写到/home/.../image/100_pokemon

基础模型写全/media/...../openjourney-v4.ckpt

一定可以训练成功的,有数据有模型有步骤,不清楚可以联系我

相关推荐
引量AI1 分钟前
TikTok矩阵运营干货:从0到1打造爆款矩阵
人工智能·矩阵·自动化·tiktok矩阵·海外社媒
Hi-Dison14 分钟前
神经网络极简入门技术分享
人工智能·深度学习·神经网络
奋斗者1号21 分钟前
机器学习之决策树模型:从基础概念到条件类型详解
人工智能·决策树·机器学习
LinkTime_Cloud39 分钟前
谷歌引入 AI 反诈系统:利用语言模型分析潜在恶意网站
人工智能·语言模型·自然语言处理
张小九9944 分钟前
PyTorch的dataloader制作自定义数据集
人工智能·pytorch·python
Panesle1 小时前
分布式异步强化学习框架训练32B大模型:INTELLECT-2
人工智能·分布式·深度学习·算法·大模型
zstar-_1 小时前
FreeTex v0.2.0:功能升级/支持Mac
人工智能·python·macos·llm
于壮士hoho1 小时前
DeepSeek | AI需求分析
人工智能·python·ai·需求分析·dash
蒙奇D索大1 小时前
【人工智能】自然语言编程革命:腾讯云CodeBuddy实战5步搭建客户管理系统,效率飙升90%
人工智能·python·django·云计算·腾讯云
AORO_BEIDOU1 小时前
遨游卫星电话与普通手机有什么区别?
人工智能·科技·5g·智能手机·信息与通信