训练自己的个性化Stable diffusion模型,LORA

一、背景

需要训练自己的LORA模型

二、分析

1、有sd-webui有训练插件功能

2、有单独的LORA训练开源web界面

两个开源训练界面

1、秋叶写的SD-Trainer

https://github.com/Akegarasu/lora-scripts/ 没成功,主要也是cudnn和nvidia-smi中的CUDA版本不一致退出

2、Kohya's GUI

GitHub - bmaltais/kohya_ss 成功了

**遇到问题1,**cudnn和nvidia-smi中的CUDA版本不一致

解决方法:unset LD_LIBRARY_PATH解决了我的问题

问题2:报错量化错误

优化器Optimizer 选 :AdamW

三、步骤

1、下载代码

复制代码
git clone https://github.com/bmaltais/kohya_ss.git

2、有Python 3.10.8环境

复制代码
cd kohya_ss

chmod +x ./setup.sh

./setup.sh

./gui.sh --listen=0.0.0.0 --headless

不要自己去安装python包,巨坑。

3、准备数据

下载该数据

https://huggingface.co/datasets/lambdalabs/pokemon-blip-captions/tree/main

复制代码
#安装处理该数据的包
# pip install -i https://pypi.tuna.tsinghua.edu.cn/simple fastparquet
# pip install pyarrow

from fastparquet import ParquetFile
datadir = r'./'
filename = datadir + r'下载的数据.parquet'
pf = ParquetFile(filename)

dF = pf.to_pandas()

from PIL import Image
import io
import base64


# 将byte数据转换为PIL图像对象
def save_png(name,image_bytes):
    image = Image.open(io.BytesIO(image_bytes))

    # 保存图像到文件
    filename = 'lora_data/'+str(name)+'.jpg'
    print(filename)
    # 调整尺寸
    new_image = image.resize((512, 512))
    new_image.save(filename)
def save_txt(name,text):
    # text = "这是要保存的文本内容"
    filename = 'lora_data/'+str(name)+'.txt'
    with open(filename, 'w') as file:
        file.write(text)
保存数据的
for index, row in dF.iterrows():
    # print(index,row['text'],row['image.bytes']) # 输出列名
    save_txt(index,row['text'])
    save_png(index,row['image.bytes'])
    if index==20:
        break

4、创建数据目录

在kohya_ss项目下,创建一个train目录,具体内容如下:

image : 图片放在这里。

log:训练记录

model:模型保存路径

image目录还有一个子目录,比如本文这里是100_pokemon,100表示100个steps,会直接影响训练的步数和效果,pokemon表示图片人物名称。

5、训练

训练数据目录填 /home/.../image 不要写到/home/.../image/100_pokemon

基础模型写全/media/...../openjourney-v4.ckpt

一定可以训练成功的,有数据有模型有步骤,不清楚可以联系我

相关推荐
丝斯20117 分钟前
AI学习笔记整理(26)—— 计算机视觉之目标追踪‌
人工智能·笔记·学习
gallonyin7 分钟前
【AI智能体】打造高内聚的 MCP-Filesystem Server
人工智能·架构·智能体
Deepoch8 分钟前
Deepoc-M 破局:半导体研发告别试错内耗
大数据·人工智能·数学建模·半导体·具身模型·deepoc
Debroon20 分钟前
Function Call 函数调用高阶方法:从零开始,深入理解 AI 函数调用的核心原理与实战技巧
人工智能
超龄超能程序猿24 分钟前
提升文本转SQL(Text-to-SQL)精准度的实践指南
数据库·人工智能·sql
柒柒钏40 分钟前
PyTorch学习总结(一)
人工智能·pytorch·学习
金融小师妹1 小时前
基于NLP政策信号解析的联邦基金利率预测:美银动态调整12月降息概率至88%,2026年双降路径的强化学习模拟
大数据·人工智能·深度学习·1024程序员节
_山止川行1 小时前
生活
人工智能
是Dream呀1 小时前
昇腾实战 | 昇腾 NPU 异构编程与 GEMM 调优核心方法
人工智能·华为·cann
JobDocLS1 小时前
深度学习软件安装
人工智能·深度学习