训练自己的个性化Stable diffusion模型,LORA

一、背景

需要训练自己的LORA模型

二、分析

1、有sd-webui有训练插件功能

2、有单独的LORA训练开源web界面

两个开源训练界面

1、秋叶写的SD-Trainer

https://github.com/Akegarasu/lora-scripts/ 没成功,主要也是cudnn和nvidia-smi中的CUDA版本不一致退出

2、Kohya's GUI

GitHub - bmaltais/kohya_ss 成功了

**遇到问题1,**cudnn和nvidia-smi中的CUDA版本不一致

解决方法:unset LD_LIBRARY_PATH解决了我的问题

问题2:报错量化错误

优化器Optimizer 选 :AdamW

三、步骤

1、下载代码

复制代码
git clone https://github.com/bmaltais/kohya_ss.git

2、有Python 3.10.8环境

复制代码
cd kohya_ss

chmod +x ./setup.sh

./setup.sh

./gui.sh --listen=0.0.0.0 --headless

不要自己去安装python包,巨坑。

3、准备数据

下载该数据

https://huggingface.co/datasets/lambdalabs/pokemon-blip-captions/tree/main

复制代码
#安装处理该数据的包
# pip install -i https://pypi.tuna.tsinghua.edu.cn/simple fastparquet
# pip install pyarrow

from fastparquet import ParquetFile
datadir = r'./'
filename = datadir + r'下载的数据.parquet'
pf = ParquetFile(filename)

dF = pf.to_pandas()

from PIL import Image
import io
import base64


# 将byte数据转换为PIL图像对象
def save_png(name,image_bytes):
    image = Image.open(io.BytesIO(image_bytes))

    # 保存图像到文件
    filename = 'lora_data/'+str(name)+'.jpg'
    print(filename)
    # 调整尺寸
    new_image = image.resize((512, 512))
    new_image.save(filename)
def save_txt(name,text):
    # text = "这是要保存的文本内容"
    filename = 'lora_data/'+str(name)+'.txt'
    with open(filename, 'w') as file:
        file.write(text)
保存数据的
for index, row in dF.iterrows():
    # print(index,row['text'],row['image.bytes']) # 输出列名
    save_txt(index,row['text'])
    save_png(index,row['image.bytes'])
    if index==20:
        break

4、创建数据目录

在kohya_ss项目下,创建一个train目录,具体内容如下:

image : 图片放在这里。

log:训练记录

model:模型保存路径

image目录还有一个子目录,比如本文这里是100_pokemon,100表示100个steps,会直接影响训练的步数和效果,pokemon表示图片人物名称。

5、训练

训练数据目录填 /home/.../image 不要写到/home/.../image/100_pokemon

基础模型写全/media/...../openjourney-v4.ckpt

一定可以训练成功的,有数据有模型有步骤,不清楚可以联系我

相关推荐
数科云1 小时前
AI提示词(Prompt)入门:什么是Prompt?为什么要写好Prompt?
人工智能·aigc·ai写作·ai工具集·最新ai资讯
Devlive 开源社区1 小时前
技术日报|Claude Code超级能力库superpowers登顶日增1538星,自主AI循环ralph爆火登榜第二
人工智能
软件供应链安全指南2 小时前
灵脉 IAST 5.4 升级:双轮驱动 AI 漏洞治理与业务逻辑漏洞精准检测
人工智能·安全
lanmengyiyu2 小时前
单塔和双塔的区别和共同点
人工智能·双塔模型·网络结构·单塔模型
微光闪现2 小时前
AI识别宠物焦虑、紧张和晕车行为,是否已经具备实际可行性?
大数据·人工智能·宠物
技术小黑屋_2 小时前
用好Few-shot Prompting,AI 准确率提升100%
人工智能
中草药z3 小时前
【嵌入模型】概念、应用与两大 AI 开源社区(Hugging Face / 魔塔)
人工智能·算法·机器学习·数据集·向量·嵌入模型
知乎的哥廷根数学学派3 小时前
基于数据驱动的自适应正交小波基优化算法(Python)
开发语言·网络·人工智能·pytorch·python·深度学习·算法
DisonTangor3 小时前
GLM-Image:面向密集知识与高保真图像生成的自回归模型
人工智能·ai作画·数据挖掘·回归·aigc
努力学习的小洋4 小时前
Python训练打卡Day5离散特征的处理-独热编码
人工智能·python·机器学习