Pytorch在二进制层面比较张量中的各行是否相同,并返回不相同的各行

代码实例:

python 复制代码
def unique(arr):
    # Finds unique rows in arr and return their indices
    arr = arr.cpu().numpy()
    arr_ = np.ascontiguousarray(arr).view(np.dtype((np.void, arr.dtype.itemsize * arr.shape[1])))
    _, idxs = np.unique(arr_, return_index=True)
    if torch.cuda.is_available():
        return torch.LongTensor(np.sort(idxs)).cuda()
    return torch.LongTensor(np.sort(idxs))

在 NumPy 中,.view() 方法用于创建数组的新视图,而不实际复制底层数据。在这种情况下,.view(np.dtype((np.void, arr.dtype.itemsize * arr.shape[1]))) 的目的是将数组 arr 转换为一个以字节为单位的视图,以便后续的操作更加灵活。

具体来说,这一行代码的操作步骤如下:

  1. np.ascontiguousarray(arr): 确保数组是按照内存中的顺序(C 风格)连续存储的,这对于后续的视图操作很重要。

  2. .view(np.dtype((np.void, arr.dtype.itemsize * arr.shape[1]))): 创建一个新的视图,该视图将数组的每一行都视为一个字节块np.dtype((np.void, arr.dtype.itemsize * arr.shape[1]))定义了这个字节块的数据类型,其中 arr.dtype.itemsize * arr.shape[1] 表示每一行的总字节数。这样,整个数组被视为一个由字节块组成的虚拟类型数组。

  3. np.void 是 NumPy 中的数据类型,表示**"虚拟"类型**。它通常用于表示内存块,而不考虑具体的数据类型。在这里,np.void 被用于创建一个足够大的数据类型,以便能够容纳整个行数据

    在特定的上下文中,np.void 类型的一个实例可能包含多个数据类型的字段,但在这里它主要用于以字节的形式表示整个行的内容,而不考虑具体的数值类型。这使得在内存中视图上进行操作更加灵活,而不依赖于原始数据类型

这种方式的操作在某些情况下很有用,尤其是在处理复杂的数据结构或需要比较原始二进制数据时。在这里,可能是为了实现对行的快速唯一性检查,因为 .unique() 方法在处理复杂数据类型时可能会遇到一些问题。

相关推荐
KG_LLM图谱增强大模型1 分钟前
[150页最新PPT]深度解析大模型与知识图谱的融合范式,通往AGI的必由之路?
人工智能·大模型·知识图谱·agi
龙亘川5 分钟前
AI 赋能智慧农业:核心技术、应用案例与学习路径全解析
人工智能·学习
过期的秋刀鱼!16 分钟前
week3-机器学习-逻辑回归模型介绍和决策边界
人工智能·机器学习·逻辑回归
38242782717 分钟前
python3网络爬虫开发实战 第二版:绑定回调
开发语言·数据库·python
好奇龙猫22 分钟前
【AI学习-comfyUI学习-第二十一-LMSD线段预处理器(建筑概念设计图)-各个部分学习】
人工智能·学习
启途AI24 分钟前
实测国内支持Nano Banana pro的ai工具,解锁PPT可编辑新体验!
人工智能·powerpoint·ppt
WitsMakeMen24 分钟前
大语言模型要用分组注意力机制GQA
人工智能·语言模型·自然语言处理
Godspeed Zhao27 分钟前
自动驾驶中的传感器技术84——Sensor Fusion(7)
人工智能·机器学习·自动驾驶
dagouaofei27 分钟前
培训项目总结 PPT 工具对比评测,哪款更专业
python·powerpoint
Hello eveybody27 分钟前
用代码生成你的电影预告片(Python)
python