Pytorch在二进制层面比较张量中的各行是否相同,并返回不相同的各行

代码实例:

python 复制代码
def unique(arr):
    # Finds unique rows in arr and return their indices
    arr = arr.cpu().numpy()
    arr_ = np.ascontiguousarray(arr).view(np.dtype((np.void, arr.dtype.itemsize * arr.shape[1])))
    _, idxs = np.unique(arr_, return_index=True)
    if torch.cuda.is_available():
        return torch.LongTensor(np.sort(idxs)).cuda()
    return torch.LongTensor(np.sort(idxs))

在 NumPy 中,.view() 方法用于创建数组的新视图,而不实际复制底层数据。在这种情况下,.view(np.dtype((np.void, arr.dtype.itemsize * arr.shape[1]))) 的目的是将数组 arr 转换为一个以字节为单位的视图,以便后续的操作更加灵活。

具体来说,这一行代码的操作步骤如下:

  1. np.ascontiguousarray(arr): 确保数组是按照内存中的顺序(C 风格)连续存储的,这对于后续的视图操作很重要。

  2. .view(np.dtype((np.void, arr.dtype.itemsize * arr.shape[1]))): 创建一个新的视图,该视图将数组的每一行都视为一个字节块np.dtype((np.void, arr.dtype.itemsize * arr.shape[1]))定义了这个字节块的数据类型,其中 arr.dtype.itemsize * arr.shape[1] 表示每一行的总字节数。这样,整个数组被视为一个由字节块组成的虚拟类型数组。

  3. np.void 是 NumPy 中的数据类型,表示**"虚拟"类型**。它通常用于表示内存块,而不考虑具体的数据类型。在这里,np.void 被用于创建一个足够大的数据类型,以便能够容纳整个行数据

    在特定的上下文中,np.void 类型的一个实例可能包含多个数据类型的字段,但在这里它主要用于以字节的形式表示整个行的内容,而不考虑具体的数值类型。这使得在内存中视图上进行操作更加灵活,而不依赖于原始数据类型

这种方式的操作在某些情况下很有用,尤其是在处理复杂的数据结构或需要比较原始二进制数据时。在这里,可能是为了实现对行的快速唯一性检查,因为 .unique() 方法在处理复杂数据类型时可能会遇到一些问题。

相关推荐
春末的南方城市19 分钟前
清华&字节开源HuMo: 打造多模态可控的人物视频,输入文字、图片、音频,生成电影级的视频,Demo、代码、模型、数据全开源。
人工智能·深度学习·机器学习·计算机视觉·aigc
whltaoin32 分钟前
Java 后端与 AI 融合:技术路径、实战案例与未来趋势
java·开发语言·人工智能·编程思想·ai生态
中杯可乐多加冰36 分钟前
smardaten AI + 无代码开发实践:基于自然语言交互快速开发【苏超赛事管理系统】
人工智能
Hy行者勇哥36 分钟前
数据中台的数据源与数据处理流程
大数据·前端·人工智能·学习·个人开发
xiaohanbao091 小时前
Transformer架构与NLP词表示演进
python·深度学习·神经网络
岁月宁静1 小时前
AI 时代,每个程序员都该拥有个人提示词库:从效率工具到战略资产的蜕变
前端·人工智能·ai编程
双向331 小时前
Trae Solo+豆包Version1.6+Seedream4.0打造"AI识菜通"
人工智能
AutoMQ1 小时前
10.17 上海 Google Meetup:从数据出发,解锁 AI 助力增长的新边界
大数据·人工智能
m0_743106461 小时前
LOBE-GS:分块&致密化效率提升
人工智能·算法·计算机视觉·3d·几何学
weixin_446260851 小时前
李宏毅2025秋季机器学习第三讲了解语言模型內部是怎么运作的演示实操2
人工智能