Pytorch在二进制层面比较张量中的各行是否相同,并返回不相同的各行

代码实例:

python 复制代码
def unique(arr):
    # Finds unique rows in arr and return their indices
    arr = arr.cpu().numpy()
    arr_ = np.ascontiguousarray(arr).view(np.dtype((np.void, arr.dtype.itemsize * arr.shape[1])))
    _, idxs = np.unique(arr_, return_index=True)
    if torch.cuda.is_available():
        return torch.LongTensor(np.sort(idxs)).cuda()
    return torch.LongTensor(np.sort(idxs))

在 NumPy 中,.view() 方法用于创建数组的新视图,而不实际复制底层数据。在这种情况下,.view(np.dtype((np.void, arr.dtype.itemsize * arr.shape[1]))) 的目的是将数组 arr 转换为一个以字节为单位的视图,以便后续的操作更加灵活。

具体来说,这一行代码的操作步骤如下:

  1. np.ascontiguousarray(arr): 确保数组是按照内存中的顺序(C 风格)连续存储的,这对于后续的视图操作很重要。

  2. .view(np.dtype((np.void, arr.dtype.itemsize * arr.shape[1]))): 创建一个新的视图,该视图将数组的每一行都视为一个字节块np.dtype((np.void, arr.dtype.itemsize * arr.shape[1]))定义了这个字节块的数据类型,其中 arr.dtype.itemsize * arr.shape[1] 表示每一行的总字节数。这样,整个数组被视为一个由字节块组成的虚拟类型数组。

  3. np.void 是 NumPy 中的数据类型,表示**"虚拟"类型**。它通常用于表示内存块,而不考虑具体的数据类型。在这里,np.void 被用于创建一个足够大的数据类型,以便能够容纳整个行数据

    在特定的上下文中,np.void 类型的一个实例可能包含多个数据类型的字段,但在这里它主要用于以字节的形式表示整个行的内容,而不考虑具体的数值类型。这使得在内存中视图上进行操作更加灵活,而不依赖于原始数据类型

这种方式的操作在某些情况下很有用,尤其是在处理复杂的数据结构或需要比较原始二进制数据时。在这里,可能是为了实现对行的快速唯一性检查,因为 .unique() 方法在处理复杂数据类型时可能会遇到一些问题。

相关推荐
XINVRY-FPGA10 分钟前
XC6SLX100T-2FGG484I 赛灵思 XilinxFPGA Spartan-6
c++·人工智能·嵌入式硬件·阿里云·ai·fpga开发·fpga
odoo中国19 分钟前
Python 深度学习 第8章 计算机视觉中的深度学习 - 卷积神经网络使用实例
python·深度学习·计算机视觉·卷积神经网络
硅谷秋水35 分钟前
MAPLE:编码从自我为中心的视频中学习的灵巧机器人操作先验
人工智能·机器学习·计算机视觉·机器人·音视频
Lx35238 分钟前
📌 深度搜索实战:3天完成原本1个月的代码重构
人工智能
offerwa40 分钟前
大模型提示工程:入门到精通的实用指南
人工智能
仙人掌_lz42 分钟前
详解如何复现LLaMA 4:从零开始利用Python构建
人工智能·python·ai·llama·智能体·ai agents
PcVue China43 分钟前
PcVue助力立讯:精密制造的智能化管控实践!
大数据·人工智能·制造
一个天蝎座 白勺 程序猿1 小时前
Python(19)Python并发编程:深入解析多线程与多进程的差异及锁机制实战
开发语言·python
星辰大海的精灵1 小时前
微信客服小助手 python接入
后端·python
AI绘画咪酱1 小时前
Stable Diffusion【进阶篇】:如何实现人脸一致
人工智能·深度学习·学习·机器学习·ai作画·stable diffusion