Pytorch在二进制层面比较张量中的各行是否相同,并返回不相同的各行

代码实例:

python 复制代码
def unique(arr):
    # Finds unique rows in arr and return their indices
    arr = arr.cpu().numpy()
    arr_ = np.ascontiguousarray(arr).view(np.dtype((np.void, arr.dtype.itemsize * arr.shape[1])))
    _, idxs = np.unique(arr_, return_index=True)
    if torch.cuda.is_available():
        return torch.LongTensor(np.sort(idxs)).cuda()
    return torch.LongTensor(np.sort(idxs))

在 NumPy 中,.view() 方法用于创建数组的新视图,而不实际复制底层数据。在这种情况下,.view(np.dtype((np.void, arr.dtype.itemsize * arr.shape[1]))) 的目的是将数组 arr 转换为一个以字节为单位的视图,以便后续的操作更加灵活。

具体来说,这一行代码的操作步骤如下:

  1. np.ascontiguousarray(arr): 确保数组是按照内存中的顺序(C 风格)连续存储的,这对于后续的视图操作很重要。

  2. .view(np.dtype((np.void, arr.dtype.itemsize * arr.shape[1]))): 创建一个新的视图,该视图将数组的每一行都视为一个字节块np.dtype((np.void, arr.dtype.itemsize * arr.shape[1]))定义了这个字节块的数据类型,其中 arr.dtype.itemsize * arr.shape[1] 表示每一行的总字节数。这样,整个数组被视为一个由字节块组成的虚拟类型数组。

  3. np.void 是 NumPy 中的数据类型,表示**"虚拟"类型**。它通常用于表示内存块,而不考虑具体的数据类型。在这里,np.void 被用于创建一个足够大的数据类型,以便能够容纳整个行数据

    在特定的上下文中,np.void 类型的一个实例可能包含多个数据类型的字段,但在这里它主要用于以字节的形式表示整个行的内容,而不考虑具体的数值类型。这使得在内存中视图上进行操作更加灵活,而不依赖于原始数据类型

这种方式的操作在某些情况下很有用,尤其是在处理复杂的数据结构或需要比较原始二进制数据时。在这里,可能是为了实现对行的快速唯一性检查,因为 .unique() 方法在处理复杂数据类型时可能会遇到一些问题。

相关推荐
云边云科技3 分钟前
门店网络重构:告别“打补丁”,用“云网融合”重塑数字竞争力!
大数据·人工智能·安全·智能路由器·零售
山海青风4 分钟前
12 Prompt 模板化与参数化
人工智能·prompt
山海青风8 分钟前
11 Prompt 工程进阶:Few-shot 与 Chain-of-Thought
人工智能·prompt
爱看科技10 分钟前
AI/AR智能眼镜步入全球破圈增长期,五大科技大厂入局加剧生态市场角逐
人工智能·科技·ar
人有一心34 分钟前
深度学习里的树模型TabNet
人工智能·深度学习
Kyln.Wu43 分钟前
【python实用小脚本-211】[硬件互联] 桌面壁纸×Python梦幻联动|用10行代码实现“开机盲盒”自动化改造实录(建议收藏)
开发语言·python·自动化
强盛小灵通专卖员43 分钟前
边缘计算设备NPU的加速原理
人工智能·深度学习·边缘计算·sci·中文核心·小论文
moz与京1 小时前
【面试向】边缘计算基础介绍
人工智能·边缘计算
ShiMetaPi1 小时前
【ShiMetaPi】基于BM1684X的智能工业视觉边缘计算盒子解决方案
人工智能·边缘计算·bm1684x
强盛小灵通专卖员1 小时前
RK3576边缘计算设备部署YOLOv11
人工智能·深度学习·yolo·边缘计算·sci·rk3576·小论文