Pytorch在二进制层面比较张量中的各行是否相同,并返回不相同的各行

代码实例:

python 复制代码
def unique(arr):
    # Finds unique rows in arr and return their indices
    arr = arr.cpu().numpy()
    arr_ = np.ascontiguousarray(arr).view(np.dtype((np.void, arr.dtype.itemsize * arr.shape[1])))
    _, idxs = np.unique(arr_, return_index=True)
    if torch.cuda.is_available():
        return torch.LongTensor(np.sort(idxs)).cuda()
    return torch.LongTensor(np.sort(idxs))

在 NumPy 中,.view() 方法用于创建数组的新视图,而不实际复制底层数据。在这种情况下,.view(np.dtype((np.void, arr.dtype.itemsize * arr.shape[1]))) 的目的是将数组 arr 转换为一个以字节为单位的视图,以便后续的操作更加灵活。

具体来说,这一行代码的操作步骤如下:

  1. np.ascontiguousarray(arr): 确保数组是按照内存中的顺序(C 风格)连续存储的,这对于后续的视图操作很重要。

  2. .view(np.dtype((np.void, arr.dtype.itemsize * arr.shape[1]))): 创建一个新的视图,该视图将数组的每一行都视为一个字节块np.dtype((np.void, arr.dtype.itemsize * arr.shape[1]))定义了这个字节块的数据类型,其中 arr.dtype.itemsize * arr.shape[1] 表示每一行的总字节数。这样,整个数组被视为一个由字节块组成的虚拟类型数组。

  3. np.void 是 NumPy 中的数据类型,表示**"虚拟"类型**。它通常用于表示内存块,而不考虑具体的数据类型。在这里,np.void 被用于创建一个足够大的数据类型,以便能够容纳整个行数据

    在特定的上下文中,np.void 类型的一个实例可能包含多个数据类型的字段,但在这里它主要用于以字节的形式表示整个行的内容,而不考虑具体的数值类型。这使得在内存中视图上进行操作更加灵活,而不依赖于原始数据类型

这种方式的操作在某些情况下很有用,尤其是在处理复杂的数据结构或需要比较原始二进制数据时。在这里,可能是为了实现对行的快速唯一性检查,因为 .unique() 方法在处理复杂数据类型时可能会遇到一些问题。

相关推荐
骥龙1 小时前
1.2、实战准备:AI安全研究环境搭建与工具链
人工智能·python·安全
天涯路s1 小时前
OpenCV 视频处理
人工智能·opencv·计算机视觉·目标跟踪
黄思搏1 小时前
Python + uiautomator2 手机自动化控制教程
python·智能手机·自动化
@LetsTGBot搜索引擎机器人1 小时前
Telegram 被封是什么原因?如何解决?(附 @letstgbot 搜索引擎重连技巧)
开发语言·python·搜索引擎·机器人·.net
AndrewHZ1 小时前
【图像处理基石】图像对比度增强入门:从概念到实战(Python+OpenCV)
图像处理·python·opencv·计算机视觉·cv·对比度增强·算法入门
XXX-X-XXJ1 小时前
Django 用户认证流程详解:从原理到实现
数据库·后端·python·django·sqlite
LaughingZhu2 小时前
Product Hunt 每日热榜 | 2025-10-25
人工智能·经验分享·搜索引擎·产品运营
2401_841495643 小时前
【数据结构】基于Prim算法的最小生成树
java·数据结构·c++·python·算法·最小生成树·prim
昵称是6硬币4 小时前
YOLO26论文精读(逐段解析)
人工智能·深度学习·yolo·目标检测·计算机视觉·yolo26
数据村的古老师6 小时前
Python数据分析实战:基于25年黄金价格数据的特征提取与算法应用【数据集可下载】
开发语言·python·数据分析