yolov8添加cbam注意力机制

(如果添加的是CBAM,已存在,忽略步骤 1 2 3)

步骤1.创建注意力机制-类

ultralytics/nn/modules/conv.py

步骤2.添加到conv.py文件的头文件里

ultralytics/nn/modules/conv.py

步骤3.添加到 init.py文件的头文件里

ultralytics/nn/modules/init .py


步骤4.tasks.py 中导入

ultralytics/nn/tasks.py

步骤5.tasks.py文件的parse_model函数,修改

在这个文件中,使用文件搜索功能(快捷键Ctrl + F),弹出快捷栏如下->

(错误步骤-不看此步骤-用于记录过程)--我们搜索下面这个代码"parse_model" 然后进行翻滚很容易就找到了下面的部分,同时进行红框内部的修改

(正确步骤)我们搜索下面这个代码"parse_model" 然后进行添加以下代码

python 复制代码
        elif m is CBAM: # todo 源码修改 (增加了elif)
            """
            ch[f]:上一层的
            args[0]:第0个参数
            c1:输入通道数
            c2:输出通道数
            """
            c1, c2 = ch[f], args[0]
            # print("ch[f]:",ch[f])
            # print("args[0]:",args[0])
            # print("args:",args)
            # print("c1:",c1)
            # print("c2:",c2)
            if c2 != nc:  # if c2 not equal to number of classes (i.e. for Classify() output)
                c2 = make_divisible(c2 * width, 8)
            args = [c1, *args[1:]]

步骤6.修改yaml文件进行网络结构的配置

如:ultralytics/cfg/models/v8 目录下的 yolov8.yaml

分析 - 学习网上的更改 (左:原结构;右:更改后的结构)

分析:在c2f层的后面添加了 CBAM层
分析:结构参数的变化

分析 - 自己任务代码的更改 (左:原结构;右:更改后的结构)

分析:在c2f层的后面添加了 CBAM层
分析:结构参数的变化

bug

yolov8训练中keyError报错

把项目中修改后的tasks.py 覆盖 环境配置里面的tasks.py,

或者将加入的注意力机制拷贝过去都可以解决此问题

环境配置里面的tasks.py目录:\anaconda3\envs\torch\Lib\site-packages\ultralytics\nn

参考链接:https://blog.csdn.net/weixin_70423469/article/details/131684931

运行效果

对比图(左:未添加cbam,右:添加cbam)

相关推荐
西猫雷婶35 分钟前
pytorch基本运算-Python控制流梯度运算
人工智能·pytorch·python·深度学习·神经网络·机器学习
子午1 小时前
Python的uv包管理工具使用
开发语言·python·uv
java1234_小锋1 小时前
Scikit-learn Python机器学习 - 分类算法 - 朴素贝叶斯
python·机器学习·scikit-learn
凡梦千华1 小时前
Django时区感知
后端·python·django
HMBBLOVEPDX1 小时前
C++(静态函数)
开发语言·c++
程序猿 小项目大搞头2 小时前
即梦批量生成图片软件使用运营大管家-即梦图片批量生成器
python
dpxiaolong2 小时前
RK3588 Android12默认移除导航栏
开发语言·python
m_136872 小时前
Mac M 系列芯片 YOLOv8 部署教程(CPU/Metal 后端一键安装)
yolo·macos
max5006002 小时前
基于多元线性回归、随机森林与神经网络的农作物元素含量预测及SHAP贡献量分析
人工智能·python·深度学习·神经网络·随机森林·线性回归·transformer
Pocker_Spades_A3 小时前
Python快速入门专业版(二十九):函数返回值:多返回值、None与函数嵌套调用
服务器·开发语言·python