使用 tensorflow.keras 接口,组装神经网络层次,训练并预测
- Keras 基础:
Keras 是一个用 Python 编写的高级神经网络 API,它能够以TensorFlow ,CNTK 或者Theano作为后端运行。在Keras的官方github上写着"Deep Learning for humans",主要是因为它能简单快速的创建神经网络, 而不需要像Tensorflow一样考虑很多中间过程.
Keras说白了就是一个壳子, 需要结合TensorFlow, CNTK或者Theano等后端框架来运行.基于这些特点, Keras的入门非常简单. TensorFlow已经把keras集成了.
- 基本语言:
代码运行调整到 CPU 或者 GPU:
bash
cpu=tf.config.list_physical_devices("CPU")
tf.config.set_visible_devices(cpu)
模型显示: model.summary()
模型创建: model = Sequential()
添加卷积层: model.add(Dense(32, activation='relu', input_dim=100)) # 第一层需要 input_dim
添加dropout: model.add(Dropout(0.2))
添加第二次网络: model.add(Dense(512, activation='relu'))
# 除了first, 其他层不要输入shape
添加输出层: model.add(Dense(num_classes, activation='softmax'))
# last 通常使用softmax
TensorFlow 中,使用 model.compile 方法来选择优化器和损失函数:
optimizer: 优化器: 主要有: tf.train.AdamOptimizer , tf.train.RMSPropOptimizer , or tf.train.GradientDescentOptimizer .
loss: 损失函数: 主要有:mean square error
(mse, 回归), categorical_crossentropy
(多分类) , and binary_crossentropy
(二分类).
metrics: 算法的评估标准, 一般分类用accuracy.
bash
model.compile(loss='categorical_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
模型训练:
bash
model.fit(x_train, y_train, batch_size = 64, epochs = 20, validation_data = (x_test, y_test)) # 模型训练
模型评估:
bash
score = model.evaluate(x_test, y_test, verbose=0) 两个返回值: [ 损失率 , 准确率 ]
大数据集处理:把大数据集数据变成dataset:
bash
dataset = tf.data.Dataset.from_tensor_slices((data, labels))
指定每批数据大小: `dataset = dataset.batch(32).repeat()`
dataset 数据训练: `model.fit(dataset, epochs=10, steps_per_epoch=30)`
保存模型: model.save('my_model.h5')
加载模型: model = tf.keras.models.load_model('my_model.h5')
bash
from keras.models import Sequential
from keras.layers import Dense, Activation
model = Sequenti([
Dense(32, input_shape=(784,)),
Activation('relu'),
Dense(10),
Activation('softmax'),
]al)
model.summary()
也可以简单的使用.add()方法将各层添加到模型中:
bash
model = Sequential()
model.add(Dense(32, input_dim=784))
model.add(Activation('relu'))
model.summary()
手写数字识别问题 mnist 数据集
python
from keras.layers import Input, Dense
from keras.models import Model
from keras.datasets import mnist
import tensorflow as tf
# 导入手写数字数据集
(x_train, y_train), (x_test, y_test) = mnist.load_data()#60000train ,10000test
# 对数据进行初步处理
x_train = x_train.reshape(60000, 784)
x_train = x_train.astype('float32')
x_train /= 255
# 将标记结果转化为独热编码
y_train = tf.keras.utils.to_categorical(y_train, num_classes=10)
# 这部分返回一个张量
inputs = Input(shape=(784))
# 层的实例是可调用的,它以张量为参数,并且返回一个张量
output_1 = Dense(64, activation='relu')(inputs)
output_2 = Dense(64, activation='relu')(output_1)
predictions = Dense(10, activation='softmax')(output_2)
# 这部分创建了一个包含输入层和三个全连接层的模型
model = Model(inputs=inputs, outputs=predictions)
model.compile(optimizer='rmsprop',
loss='categorical_crossentropy',
metrics=['accuracy'])
model.fit(x_train, y_train) # 开始训练