深度学习推理(Inference)

深度学习推理(Inference)是指已经训练好的深度学习模型在新的、未见过的数据上进行预测或分类的过程。在训练阶段,模型通过学习输入数据的模式和特征来调整参数,而在推理阶段,模型将这些学到的知识应用于新的输入数据,以生成预测结果。

以下是深度学习推理的一般流程:

  1. 加载模型: 已经训练好的深度学习模型的权重和结构被加载到内存中。这通常包括模型的体系结构、权重、和其他必要的参数。

  2. 准备输入数据: 需要进行推理的新数据被预处理和转换为模型可接受的格式。这可能包括归一化、调整大小、裁剪等操作,以使输入数据符合模型的要求。

  3. 前向传播: 输入数据通过深度学习模型的前向传播过程。在前向传播中,数据通过模型的各层,经过权重和激活函数的计算,最终生成模型的输出。

  4. 生成输出: 模型的输出是推理的结果。对于分类问题,这可能是预测的类别;对于回归问题,这可能是数值预测;对于生成模型,这可能是新的样本。

  5. 后处理(可选): 在一些应用中,输出可能需要进行后处理,以满足特定的需求。例如,在目标检测中,可能需要使用非极大值抑制(NMS)来去除冗余的边界框。

  6. 解释结果(可选): 有时候,对模型的输出进行解释是很有帮助的。这可能涉及到可视化、概率解释、或者其他方式来理解模型的决策过程。

  7. 输出结果: 推理的结果可以被输出到文件、显示在界面上,或者集成到其他系统中,具体取决于应用的需求。

深度学习推理通常发生在没有梯度更新的情况下,与训练阶段相对应。由于深度学习模型在训练阶段学到了数据的表示,推理阶段可以广泛应用于各种任务,如图像分类、目标检测、语音识别等。

相关推荐
-Nemophilist-19 分钟前
机器学习与深度学习-1-线性回归从零开始实现
深度学习·机器学习·线性回归
成富1 小时前
文本转SQL(Text-to-SQL),场景介绍与 Spring AI 实现
数据库·人工智能·sql·spring·oracle
CSDN云计算1 小时前
如何以开源加速AI企业落地,红帽带来新解法
人工智能·开源·openshift·红帽·instructlab
艾派森1 小时前
大数据分析案例-基于随机森林算法的智能手机价格预测模型
人工智能·python·随机森林·机器学习·数据挖掘
hairenjing11231 小时前
在 Android 手机上从SD 卡恢复数据的 6 个有效应用程序
android·人工智能·windows·macos·智能手机
小蜗子1 小时前
Multi‐modal knowledge graph inference via media convergenceand logic rule
人工智能·知识图谱
SpikeKing2 小时前
LLM - 使用 LLaMA-Factory 微调大模型 环境配置与训练推理 教程 (1)
人工智能·llm·大语言模型·llama·环境配置·llamafactory·训练框架
黄焖鸡能干四碗2 小时前
信息化运维方案,实施方案,开发方案,信息中心安全运维资料(软件资料word)
大数据·人工智能·软件需求·设计规范·规格说明书
2 小时前
开源竞争-数据驱动成长-11/05-大专生的思考
人工智能·笔记·学习·算法·机器学习
ctrey_2 小时前
2024-11-4 学习人工智能的Day21 openCV(3)
人工智能·opencv·学习