深度学习推理(Inference)

深度学习推理(Inference)是指已经训练好的深度学习模型在新的、未见过的数据上进行预测或分类的过程。在训练阶段,模型通过学习输入数据的模式和特征来调整参数,而在推理阶段,模型将这些学到的知识应用于新的输入数据,以生成预测结果。

以下是深度学习推理的一般流程:

  1. 加载模型: 已经训练好的深度学习模型的权重和结构被加载到内存中。这通常包括模型的体系结构、权重、和其他必要的参数。

  2. 准备输入数据: 需要进行推理的新数据被预处理和转换为模型可接受的格式。这可能包括归一化、调整大小、裁剪等操作,以使输入数据符合模型的要求。

  3. 前向传播: 输入数据通过深度学习模型的前向传播过程。在前向传播中,数据通过模型的各层,经过权重和激活函数的计算,最终生成模型的输出。

  4. 生成输出: 模型的输出是推理的结果。对于分类问题,这可能是预测的类别;对于回归问题,这可能是数值预测;对于生成模型,这可能是新的样本。

  5. 后处理(可选): 在一些应用中,输出可能需要进行后处理,以满足特定的需求。例如,在目标检测中,可能需要使用非极大值抑制(NMS)来去除冗余的边界框。

  6. 解释结果(可选): 有时候,对模型的输出进行解释是很有帮助的。这可能涉及到可视化、概率解释、或者其他方式来理解模型的决策过程。

  7. 输出结果: 推理的结果可以被输出到文件、显示在界面上,或者集成到其他系统中,具体取决于应用的需求。

深度学习推理通常发生在没有梯度更新的情况下,与训练阶段相对应。由于深度学习模型在训练阶段学到了数据的表示,推理阶段可以广泛应用于各种任务,如图像分类、目标检测、语音识别等。

相关推荐
CV学术叫叫兽11 分钟前
快速图像识别:落叶植物叶片分类
人工智能·分类·数据挖掘
WeeJot嵌入式37 分钟前
卷积神经网络:深度学习中的图像识别利器
人工智能
糖豆豆今天也要努力鸭1 小时前
torch.__version__的torch版本和conda list的torch版本不一致
linux·pytorch·python·深度学习·conda·torch
脆皮泡泡1 小时前
Ultiverse 和web3新玩法?AI和GameFi的结合是怎样
人工智能·web3
机器人虎哥1 小时前
【8210A-TX2】Ubuntu18.04 + ROS_ Melodic + TM-16多线激光 雷达评测
人工智能·机器学习
码银1 小时前
冲破AI 浪潮冲击下的 迷茫与焦虑
人工智能
用户37791362947551 小时前
【循环神经网络】只会Python,也能让AI写出周杰伦风格的歌词
人工智能·算法
何大春1 小时前
【弱监督语义分割】Self-supervised Image-specific Prototype Exploration for WSSS 论文阅读
论文阅读·人工智能·python·深度学习·论文笔记·原型模式
uncle_ll1 小时前
PyTorch图像预处理:计算均值和方差以实现标准化
图像处理·人工智能·pytorch·均值算法·标准化
宋138102797201 小时前
Manus Xsens Metagloves虚拟现实手套
人工智能·机器人·vr·动作捕捉