力扣973. 最接近原点的 K 个点(java 排序法,大顶堆法)

Problem: 973. 最接近原点的 K 个点

文章目录

题目描述

给定一个数组 points ,其中 points[i] = [xi, yi] 表示 X-Y 平面上的一个点,并且是一个整数 k ,返回离原点 (0,0) 最近的 k 个点。

这里,平面上两点之间的距离是 欧几里德距离( √(x1 - x2)2 + (y1 - y2)2 )。

你可以按 任何顺序 返回答案。除了点坐标的顺序之外,答案 确保 是 唯一 的。

思路

由于本题的数据是静态的 即为了获取前TOP K 我们既可以利用排序法 (一般较多使用快速排序,多用于处理静态数据),也可以使用(多用于处理动态的数据)的解法来解决!

排序法:

我们将每个顶点距离原点的欧几里得距离排序,取出前K小的即可(实际操作中只需要对顶点坐标的坐标差的平方和排序即刻

大顶堆解法:

1.我们创建一个大顶堆 ,先将前K个顶点坐标差的平方和添加进大顶堆

2.再依次计算第K + 1到N个顶点坐标差的平方和,并依次与当前大顶堆顶的元素比较,若小于当前大顶堆的堆顶元素,则更新堆顶元素为当前的顶点的坐标差的平方和

解题方法

排序法:

1.利用java内置的排序方法,并重新定义一个Comparator接口比较计算了两个点到原点的欧几里得距离的平方

2.返回前k的顶点坐标(二维数组)

大顶堆解法:

1.我们创建一个大顶堆 ,堆中存取一个int类型的数组,数组的下标0位置存储该顶点到原点欧几里得距离的平方 ,下标为1位置存储该顶点在二维数组中的一维索引

2.再依次计算第K + 1到N个顶点坐标差的平方和,并依次与当前大顶堆顶的元素比较,若小于当前大顶堆的堆顶元素,则更新堆顶元素为当前的顶点的坐标差的平方和,与该顶点在二维数组中的一维索引

3.定义二维结果数组,存储当前大顶堆的前k大个元素,并返回(具体操作看代码)

复杂度

排序法:

时间复杂度:

O ( n l o g n ) O(nlogn) O(nlogn)

空间复杂度:

O ( l o g n ) O(logn) O(logn)

大顶堆解法:

时间复杂度:

O ( n l o g k ) O(nlogk) O(nlogk)

空间复杂度:

O ( k ) O(k) O(k)

Code

排序法

java 复制代码
class Solution {
    /**
     * Get the first k points closest to the origin using sort
     *
     * @param points Vertex coordinate array
     * @param k      Given number
     * @return int[][]
     */
    public int[][] kClosest(int[][] points, int k) {
        Arrays.sort(points, new Comparator<int[]>() {
            public int compare(int[] point1, int[] point2) {
                return (point1[0] * point1[0] + point1[1] * point1[1]) - (point2[0] * point2[0] + point2[1] * point2[1]);
            }
        });
        return Arrays.copyOfRange(points, 0, k);
    }
}
java 复制代码
class Solution {
    /**
     * Gets the first k vertices closest to the origin
     *
     * @param points Vertex coordinate array
     * @param k      Given number
     * @return int[][]
     */
    public int[][] kClosest(int[][] points, int k) {
        //Create an maxQueue
        PriorityQueue<int[]> maxQueue = new PriorityQueue<>(new Comparator<int[]>() {
            @Override
            public int compare(int[] o1, int[] o2) {
                return o2[0] - o1[0];
            }
        });
        //Adds the square of the Euclidean distance for the first k coordinates to the maxQueue
        for (int i = 0; i < k; ++i) {
            maxQueue.offer(new int[]{points[i][0] * points[i][0] + points[i][1] * points[i][1], i});
        }
        int n = points.length;
        /*
        1.Add the square of the Euclidean distance from k+1 to n vertices to the maxQueue
        2.If the value is less than the value for the top of the maxQueue, its value is updated
         */
        for (int i = k; i < n; ++i) {
            int distance = points[i][0] * points[i][0] + points[i][1] * points[i][1];
            if (distance < maxQueue.peek()[0]) {
                maxQueue.poll();
                maxQueue.offer(new int[]{distance, i});
            }
        }
        int[][] result = new int[k][2];
        for (int i = 0; i < k; ++i) {
            result[i] = points[maxQueue.poll()[1]];
        }
        return result;
    }
}
相关推荐
吾日三省吾码2 小时前
JVM 性能调优
java
LNTON羚通2 小时前
摄像机视频分析软件下载LiteAIServer视频智能分析平台玩手机打电话检测算法技术的实现
算法·目标检测·音视频·监控·视频监控
弗拉唐3 小时前
springBoot,mp,ssm整合案例
java·spring boot·mybatis
oi773 小时前
使用itextpdf进行pdf模版填充中文文本时部分字不显示问题
java·服务器
少说多做3434 小时前
Android 不同情况下使用 runOnUiThread
android·java
知兀4 小时前
Java的方法、基本和引用数据类型
java·笔记·黑马程序员
哭泣的眼泪4084 小时前
解析粗糙度仪在工业制造及材料科学和建筑工程领域的重要性
python·算法·django·virtualenv·pygame
清炒孔心菜4 小时前
每日一题 LCR 078. 合并 K 个升序链表
leetcode
蓝黑20204 小时前
IntelliJ IDEA常用快捷键
java·ide·intellij-idea