力扣973. 最接近原点的 K 个点(java 排序法,大顶堆法)

Problem: 973. 最接近原点的 K 个点

文章目录

题目描述

给定一个数组 points ,其中 points[i] = [xi, yi] 表示 X-Y 平面上的一个点,并且是一个整数 k ,返回离原点 (0,0) 最近的 k 个点。

这里,平面上两点之间的距离是 欧几里德距离( √(x1 - x2)2 + (y1 - y2)2 )。

你可以按 任何顺序 返回答案。除了点坐标的顺序之外,答案 确保 是 唯一 的。

思路

由于本题的数据是静态的 即为了获取前TOP K 我们既可以利用排序法 (一般较多使用快速排序,多用于处理静态数据),也可以使用(多用于处理动态的数据)的解法来解决!

排序法:

我们将每个顶点距离原点的欧几里得距离排序,取出前K小的即可(实际操作中只需要对顶点坐标的坐标差的平方和排序即刻

大顶堆解法:

1.我们创建一个大顶堆 ,先将前K个顶点坐标差的平方和添加进大顶堆

2.再依次计算第K + 1到N个顶点坐标差的平方和,并依次与当前大顶堆顶的元素比较,若小于当前大顶堆的堆顶元素,则更新堆顶元素为当前的顶点的坐标差的平方和

解题方法

排序法:

1.利用java内置的排序方法,并重新定义一个Comparator接口比较计算了两个点到原点的欧几里得距离的平方

2.返回前k的顶点坐标(二维数组)

大顶堆解法:

1.我们创建一个大顶堆 ,堆中存取一个int类型的数组,数组的下标0位置存储该顶点到原点欧几里得距离的平方 ,下标为1位置存储该顶点在二维数组中的一维索引

2.再依次计算第K + 1到N个顶点坐标差的平方和,并依次与当前大顶堆顶的元素比较,若小于当前大顶堆的堆顶元素,则更新堆顶元素为当前的顶点的坐标差的平方和,与该顶点在二维数组中的一维索引

3.定义二维结果数组,存储当前大顶堆的前k大个元素,并返回(具体操作看代码)

复杂度

排序法:

时间复杂度:

O ( n l o g n ) O(nlogn) O(nlogn)

空间复杂度:

O ( l o g n ) O(logn) O(logn)

大顶堆解法:

时间复杂度:

O ( n l o g k ) O(nlogk) O(nlogk)

空间复杂度:

O ( k ) O(k) O(k)

Code

排序法

java 复制代码
class Solution {
    /**
     * Get the first k points closest to the origin using sort
     *
     * @param points Vertex coordinate array
     * @param k      Given number
     * @return int[][]
     */
    public int[][] kClosest(int[][] points, int k) {
        Arrays.sort(points, new Comparator<int[]>() {
            public int compare(int[] point1, int[] point2) {
                return (point1[0] * point1[0] + point1[1] * point1[1]) - (point2[0] * point2[0] + point2[1] * point2[1]);
            }
        });
        return Arrays.copyOfRange(points, 0, k);
    }
}
java 复制代码
class Solution {
    /**
     * Gets the first k vertices closest to the origin
     *
     * @param points Vertex coordinate array
     * @param k      Given number
     * @return int[][]
     */
    public int[][] kClosest(int[][] points, int k) {
        //Create an maxQueue
        PriorityQueue<int[]> maxQueue = new PriorityQueue<>(new Comparator<int[]>() {
            @Override
            public int compare(int[] o1, int[] o2) {
                return o2[0] - o1[0];
            }
        });
        //Adds the square of the Euclidean distance for the first k coordinates to the maxQueue
        for (int i = 0; i < k; ++i) {
            maxQueue.offer(new int[]{points[i][0] * points[i][0] + points[i][1] * points[i][1], i});
        }
        int n = points.length;
        /*
        1.Add the square of the Euclidean distance from k+1 to n vertices to the maxQueue
        2.If the value is less than the value for the top of the maxQueue, its value is updated
         */
        for (int i = k; i < n; ++i) {
            int distance = points[i][0] * points[i][0] + points[i][1] * points[i][1];
            if (distance < maxQueue.peek()[0]) {
                maxQueue.poll();
                maxQueue.offer(new int[]{distance, i});
            }
        }
        int[][] result = new int[k][2];
        for (int i = 0; i < k; ++i) {
            result[i] = points[maxQueue.poll()[1]];
        }
        return result;
    }
}
相关推荐
计算机毕业设计木哥几秒前
计算机毕业设计选题推荐:基于SpringBoot和Vue的爱心公益网站
java·开发语言·vue.js·spring boot·后端·课程设计
ANnianStriver2 分钟前
智谱大模型实现文生视频案例
java·aigc
Q741_1474 分钟前
C++ 面试基础考点 模拟题 力扣 38. 外观数列 题解 每日一题
c++·算法·leetcode·面试·模拟
普通网友13 分钟前
KUD#73019
java·php·程序优化
番茄Salad17 分钟前
自定义Spring Boot Starter项目并且在其他项目中通过pom引入使用
java·spring boot
W_chuanqi19 分钟前
RDEx:一种效果驱动的混合单目标优化器,自适应选择与融合多种算子与策略
人工智能·算法·机器学习·性能优化
程序员三明治30 分钟前
详解Redis锁误删、原子性难题及Redisson加锁底层原理、WatchDog续约机制
java·数据库·redis·分布式锁·redisson·watchdog·看门狗
L_090733 分钟前
【Algorithm】二分查找算法
c++·算法·leetcode
靠近彗星36 分钟前
3.3栈与队列的应用
数据结构·算法
自由的疯39 分钟前
Java 怎么学习Kubernetes
java·后端·架构