Flink入门之核心概念(三)

任务槽

  • TaskSlots: 任务槽,是TaskManager提供的用于执行Task的资源(CPU + 内存)

  • TaskManager提供的TaskSlots的个数:主要由Taskmanager所在机器的CPU核心数来决定,不能超过CPU的最大核心数

    • 1.可以在flink/conf/flink-conf.yaml文件中的numberOfTaskSlot配置
    • 2.在yarn集群中运行flink时,任务槽的个数受到yarn中container的最大CPU数 vcores
  • 一个作业的Task数量如何确定?

    • 1.主要由算子数、算子链数、并行度共同来决定的
    • 2.如果禁用算子链合并,task的数量 = 算子数 * 并行度(并行度相同)
    • 3.如果存在算子链合并,task的数量 = 合并后的算子链数(包含不合并的算子)* 并行度(并行度相同)
  • Slot共享:flink允许将上下游的task共享给同一个slot。但是注意,同一个Task的并行子任务不允许共享

  • 为什么要Slot共享?

    • 1.当我们将资源密集型和非密集型的任务同时放到一个slot中,他们就可以自行分配对资源占用的比例,保证最重的活平均分配给所有的Taskmanager
    • 2.Slot共享另一个好处就是在一个Slot中可以保存完整的作业管道
  • 能不能不共享?

    • 通过设置共享组(算子.slotSharingGroup("共享组名"))来实现共享或者不共享,默认的共享组为default,从source端往后传递,如果下游的算子没有具体设置共享组
  • 一个作业的并行度如何确定?

    • 作业的并行度由当前作业中并行度最大的算子的并行度决定
    • 一个作业需要多少个TaskSlot如何确定?
    • 作业需要多少个taskSlot由作业的并行度决定(前提是slot共享)

Yarn应用模式作业提交流程

  1. 客户端提交任务,Yarn的ResourceManager启动AM
  2. AM中的Actor通信系统
    • 启动资源管理器
    • 启动分发器
      • 分发器启动JobMaster
  3. JobMaster
    • 生成逻辑流图
    • 生成作业流图
    • 生成执行流图
    • 向资源管理器 注册请求Slot
  4. 资源管理器向Yarn的Resource manager申请资源
  5. Resource Manager启动TaskManager
  6. TaskManager向AM中的资源管理器注册需要的Slot
  7. AM的资源管理器分配slot给TaskManager
  8. JobMaster获取目前TaskManager现有的Slot个数
  9. JobMaster分配任务给各个TaskManager,各个TaskManager生成相应的物理流图并执行。
相关推荐
十六年开源服务商32 分钟前
WordPress站内SEO优化最佳实践指南
大数据·开源
搞科研的小刘选手34 分钟前
【北京师范大学主办】第三届信息化教育与计算机技术国际学术会议(IECA 2026)
大数据·计算机技术·学术会议·教育学·stem
expect7g1 小时前
Paimon源码解读 -- Compaction-4.KeyValueFileStoreWrite
大数据·flink
老蒋新思维2 小时前
创客匠人 2025 万人峰会核心:AI 驱动知识产品变现革新
大数据·人工智能·网络协议·tcp/ip·创始人ip·创客匠人·知识变现
expect7g2 小时前
Paimon源码解读 -- FULL_COMPACTION_DELTA_COMMITS
大数据·后端·flink
老蒋新思维3 小时前
创客匠人峰会新视角:AI 时代知识变现的 “组织化转型”—— 从个人 IP 到 “AI+IP” 组织的增长革命
大数据·人工智能·网络协议·tcp/ip·创始人ip·创客匠人·知识变现
TMO Group 探谋网络科技4 小时前
AI Agent工作原理:如何连接数据、决策与行动,助力企业数字化转型?
大数据·人工智能·ai
Chasing Aurora4 小时前
Git 工程指引(命令+问题)
大数据·git·elasticsearch·团队开发·互联网大厂
TG:@yunlaoda360 云老大5 小时前
阿里云国际站代理商RPA跨境服务的适用场景有哪些?
大数据·阿里云·rpa
微盛企微增长小知识6 小时前
2025企业微信服务商测评:头部服务商微盛AI·企微管家技术实力与落地效果解析
大数据·人工智能·企业微信