基于spark的奥运会奖牌变化数据分析

基于spark的奥运会奖牌变化数据分析

项目概况

**👇👇👇👇👇👇👇👇**

点这里,查看所有项目

**👆👆👆👆👆👆👆👆**

数据类型

奥运会奖牌数据

开发环境

centos7

软件版本

python3.8.18、hadoop3.2.0、spark3.1.2、mysql5.7.38、scala2.12.18、jdk8

开发语言

python、Scala

开发流程

数据上传(hdfs)->数据分析(spark)->数据存储(mysql)->后端(flask)->前端(html+js+css)

可视化图表




操作步骤

python安装包

shell 复制代码
pip3 install pandas==2.0.3 -i https://mirrors.aliyun.com/pypi/simple/
pip3 install flask==3.0.0 -i https://mirrors.aliyun.com/pypi/simple/
pip3 install flask-cors==4.0.1 -i https://mirrors.aliyun.com/pypi/simple/
pip3 install pymysql==1.1.0 -i https://mirrors.aliyun.com/pypi/simple/
pip3 install pyecharts==2.0.4 -i https://pypi.tuna.tsinghua.edu.cn/simple

启动MySQL

shell 复制代码
# 查看mysql是否启动 启动命令: systemctl start mysqld.service
systemctl status mysqld.service
# 进入mysql终端
# MySQL的用户名:root 密码:123456
# MySQL的用户名:root 密码:123456
# MySQL的用户名:root 密码:123456
mysql -uroot -p123456

创建MySQL库

sql 复制代码
CREATE DATABASE IF NOT EXISTS echarts CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci;

启动Hadoop

shell 复制代码
# 离开安全模式: hdfs dfsadmin -safemode leave
# 启动hadoop
bash /export/software/hadoop-3.2.0/sbin/start-hadoop.sh

准备目录

shell 复制代码
mkdir -p /data/jobs/project/
cd /data/jobs/project/

# 上传 "project-spark-olympic-gold-medals-analysis" 整个文件夹 到 "/data/jobs/project/" 目录

上传文件到hdfs

shell 复制代码
cd /data/jobs/project/project-spark-olympic-gold-medals-analysis/data

hdfs dfs -mkdir -p /data/input/
hdfs dfs -rm -r /data/input/*
hdfs dfs -put summer.csv /data/input/

hdfs dfs -ls /data/input/

程序打包

shell 复制代码
cd /data/jobs/project/

# 对 项目 "project-spark-olympic-gold-medals-analysis" 进行打包
# 打包命令: mvn clean package -Dmaven.test.skip=true
# yes | cp /data/jobs/project/project-spark-olympic-gold-medals-analysis/target/project-spark-olympic-gold-medals-analysis-jar-with-dependencies.jar /data/jobs/project/

# 上传 "project-spark-olympic-gold-medals-analysis/target/" 目录下的 "project-spark-olympic-gold-medals-analysis-jar-with-dependencies.jar" 文件 到 "/data/jobs/project/" 目录

spark数据分析

shell 复制代码
cd /data/jobs/project/

spark-submit \
--master local[*] \
--class org.example.demo.CleanCsv \
/data/jobs/project/project-spark-olympic-gold-medals-analysis-jar-with-dependencies.jar /data/input/ /data/output/

启动可视化

shell 复制代码
cd /data/jobs/project/project-spark-olympic-gold-medals-analysis/可视化/flaskProject/

# windows本地运行: python app.py
python3 app.py pro
相关推荐
Guheyunyi35 分钟前
风险感知中枢:监测预警系统的架构与核心
大数据·运维·安全·重构·架构·自动化
正在走向自律43 分钟前
大数据背景下时序数据库选型指南:国产开源技术的突破与实践
大数据·开源·时序数据库
m***记1 小时前
Python 数据分析入门:Pandas vs NumPy 全方位对比
python·数据分析·pandas
shinelord明2 小时前
【大数据技术实战】Kafka 认证机制全解析
大数据·数据结构·分布式·架构·kafka
文火冰糖的硅基工坊3 小时前
[创业之路-702]:“第三次”与“第四次工业革命”的范式跃迁
大数据·人工智能·科技·嵌入式硬件·架构·嵌入式·gpu
TDengine (老段)3 小时前
TDengine 数据函数 LN 用户手册
大数据·数据库·物联网·时序数据库·tdengine·涛思数据
TDengine (老段)6 小时前
连接 TDengine 遇到报错 “failed to connect to server, reason: Connection refused” 怎么办?
大数据·数据库·物联网·时序数据库·iot·tdengine·涛思数据
攻城狮7号6 小时前
AI+大数据时代:如何从架构到生态重构时序数据库的价值?
大数据·人工智能·时序数据库·apache iotdb·sql大模型
西贝爱学习6 小时前
2025电脑价格数据集/构建电脑价格预测模型/数据量为 10 万行
数据分析·电脑
TDengine (老段)6 小时前
内网搭建邮件服务,打通 TDengine IDMP 通知途径
大数据·时序数据库·tdengine