力扣295. 数据流的中位数

优先队列

  • 思路:
    • 中位数是排序中间的数值:S1.M.S2
    • 可以使用两个优先队列来存放两边的数值,总是使得左侧的堆顶是最大的,右侧的堆顶是最小的,即使用大顶堆存放 S1,使用小顶堆存放S2,使得两个队列的 size 维持"平衡",则中位数就会在两个堆顶"附近"了;
    • 维持两个队列 size 平衡:
      • 数据先 push 的大顶堆,如果是 > M 的数,则会在堆顶;如果是 < M 的数,则会沉入队列中;
      • 然后将堆顶的数 push 到小顶堆,如果是 > M 的数,会沉入队列;如果是 < M 的数,会在堆顶;
      • 将大顶堆的堆顶 pop;(因为已经 push 到小顶堆)
      • 判断一下两个队列的size,如果大顶堆的 size 少了,将小顶堆的堆顶"漏"到大顶堆;(可以将两个队列组合成漏斗,更直观)
    • 此时的中位数:
      • 如果大顶堆 size 多,则中位数是其堆顶;
      • 否则,为两个堆顶的均值;
cpp 复制代码
class MedianFinder {
public:
    MedianFinder() {

    }
    
    void addNum(int num) {
        low.push(num);
        high.push(low.top());
        low.pop();

        if (low.size() < high.size()) {
            low.push(high.top());
            high.pop();
        }
    }
    
    double findMedian() {
        if (low.size() > high.size()) {
            return low.top();
        }

        return (low.top() + high.top()) / 2.0;
    }

private:
    std::priority_queue<int, std::vector<int>, std::less<int>> low;
    std::priority_queue<int, std::vector<int>, std::greater<int>> high;
};

/**
 * Your MedianFinder object will be instantiated and called as such:
 * MedianFinder* obj = new MedianFinder();
 * obj->addNum(num);
 * double param_2 = obj->findMedian();
 */
相关推荐
shangjian0071 小时前
AI大模型-评价指标-相关术语
人工智能·算法
f***68601 小时前
【SpringBoot篇】详解Bean的管理(获取bean,bean的作用域,第三方bean)
java·spring boot·后端
Live&&learn2 小时前
算法训练-数据结构
数据结构·算法·leetcode
likuolei2 小时前
Eclipse 快捷键
java·ide·eclipse
松岛雾奈.2303 小时前
机器学习--PCA降维算法
人工智能·算法·机器学习
电子_咸鱼4 小时前
【STL string 全解析:接口详解、测试实战与模拟实现】
开发语言·c++·vscode·python·算法·leetcode
sweet丶4 小时前
适合iOS开发的一种缓存策略YYCache库 的原理
算法·架构
哈茶真的c4 小时前
【书籍心得】左耳听风:传奇程序员练级攻略
java·c语言·python·go
喝养乐多长不高4 小时前
JAVA微服务脚手架项目详解(三)
java·大数据·微服务·文件·地图·oss
是宇写的啊4 小时前
算法—滑动窗口
算法