力扣295. 数据流的中位数

优先队列

  • 思路:
    • 中位数是排序中间的数值:S1.M.S2
    • 可以使用两个优先队列来存放两边的数值,总是使得左侧的堆顶是最大的,右侧的堆顶是最小的,即使用大顶堆存放 S1,使用小顶堆存放S2,使得两个队列的 size 维持"平衡",则中位数就会在两个堆顶"附近"了;
    • 维持两个队列 size 平衡:
      • 数据先 push 的大顶堆,如果是 > M 的数,则会在堆顶;如果是 < M 的数,则会沉入队列中;
      • 然后将堆顶的数 push 到小顶堆,如果是 > M 的数,会沉入队列;如果是 < M 的数,会在堆顶;
      • 将大顶堆的堆顶 pop;(因为已经 push 到小顶堆)
      • 判断一下两个队列的size,如果大顶堆的 size 少了,将小顶堆的堆顶"漏"到大顶堆;(可以将两个队列组合成漏斗,更直观)
    • 此时的中位数:
      • 如果大顶堆 size 多,则中位数是其堆顶;
      • 否则,为两个堆顶的均值;
cpp 复制代码
class MedianFinder {
public:
    MedianFinder() {

    }
    
    void addNum(int num) {
        low.push(num);
        high.push(low.top());
        low.pop();

        if (low.size() < high.size()) {
            low.push(high.top());
            high.pop();
        }
    }
    
    double findMedian() {
        if (low.size() > high.size()) {
            return low.top();
        }

        return (low.top() + high.top()) / 2.0;
    }

private:
    std::priority_queue<int, std::vector<int>, std::less<int>> low;
    std::priority_queue<int, std::vector<int>, std::greater<int>> high;
};

/**
 * Your MedianFinder object will be instantiated and called as such:
 * MedianFinder* obj = new MedianFinder();
 * obj->addNum(num);
 * double param_2 = obj->findMedian();
 */
相关推荐
李慕婉学姐6 小时前
【开题答辩过程】以《基于JAVA的校园即时配送系统的设计与实现》为例,不知道这个选题怎么做的,不知道这个选题怎么开题答辩的可以进来看看
java·开发语言·数据库
じ☆冷颜〃6 小时前
黎曼几何驱动的算法与系统设计:理论、实践与跨领域应用
笔记·python·深度学习·网络协议·算法·机器学习
数据大魔方6 小时前
【期货量化实战】日内动量策略:顺势而为的短线交易法(Python源码)
开发语言·数据库·python·mysql·算法·github·程序员创富
POLITE36 小时前
Leetcode 23. 合并 K 个升序链表 (Day 12)
算法·leetcode·链表
楚来客6 小时前
AI基础概念之八:Transformer算法通俗解析
人工智能·算法·transformer
Echo_NGC22377 小时前
【神经视频编解码NVC】传统神经视频编解码完全指南:从零读懂 AI 视频压缩的基石
人工智能·深度学习·算法·机器学习·视频编解码
会员果汁7 小时前
leetcode-动态规划-买卖股票
算法·leetcode·动态规划
奋进的芋圆7 小时前
Java 延时任务实现方案详解(适用于 Spring Boot 3)
java·spring boot·redis·rabbitmq
橘颂TA7 小时前
【剑斩OFFER】算法的暴力美学——二进制求和
算法·leetcode·哈希算法·散列表·结构与算法
sxlishaobin8 小时前
设计模式之桥接模式
java·设计模式·桥接模式