力扣295. 数据流的中位数

优先队列

  • 思路:
    • 中位数是排序中间的数值:S1.M.S2
    • 可以使用两个优先队列来存放两边的数值,总是使得左侧的堆顶是最大的,右侧的堆顶是最小的,即使用大顶堆存放 S1,使用小顶堆存放S2,使得两个队列的 size 维持"平衡",则中位数就会在两个堆顶"附近"了;
    • 维持两个队列 size 平衡:
      • 数据先 push 的大顶堆,如果是 > M 的数,则会在堆顶;如果是 < M 的数,则会沉入队列中;
      • 然后将堆顶的数 push 到小顶堆,如果是 > M 的数,会沉入队列;如果是 < M 的数,会在堆顶;
      • 将大顶堆的堆顶 pop;(因为已经 push 到小顶堆)
      • 判断一下两个队列的size,如果大顶堆的 size 少了,将小顶堆的堆顶"漏"到大顶堆;(可以将两个队列组合成漏斗,更直观)
    • 此时的中位数:
      • 如果大顶堆 size 多,则中位数是其堆顶;
      • 否则,为两个堆顶的均值;
cpp 复制代码
class MedianFinder {
public:
    MedianFinder() {

    }
    
    void addNum(int num) {
        low.push(num);
        high.push(low.top());
        low.pop();

        if (low.size() < high.size()) {
            low.push(high.top());
            high.pop();
        }
    }
    
    double findMedian() {
        if (low.size() > high.size()) {
            return low.top();
        }

        return (low.top() + high.top()) / 2.0;
    }

private:
    std::priority_queue<int, std::vector<int>, std::less<int>> low;
    std::priority_queue<int, std::vector<int>, std::greater<int>> high;
};

/**
 * Your MedianFinder object will be instantiated and called as such:
 * MedianFinder* obj = new MedianFinder();
 * obj->addNum(num);
 * double param_2 = obj->findMedian();
 */
相关推荐
飞翔的佩奇2 分钟前
Java项目: 基于SpringBoot+mybatis+maven+mysql实现的图书管理系统(含源码+数据库+答辩PPT+毕业论文)
java·数据库·spring boot·mysql·spring·毕业设计·图书管理
赵鑫亿39 分钟前
7.DP算法
算法·dp
iqay1 小时前
【C语言】填空题/程序填空题1
c语言·开发语言·数据结构·c++·算法·c#
还有糕手1 小时前
算法【有依赖的背包】
算法·动态规划
jerry6092 小时前
注解(Annotation)
java·数据库·sql
Future_yzx2 小时前
Java Web的发展史与SpringMVC入门学习(SpringMVC框架入门案例)
java·前端·学习
pursuit_csdn2 小时前
力扣 347. 前 K 个高频元素
算法·leetcode
wen__xvn2 小时前
每日一题洛谷B3865 [GESP202309 二级] 小杨的 X 字矩阵c++
c++·算法·矩阵
makabaka_T_T2 小时前
25寒假算法刷题 | Day1 | LeetCode 240. 搜索二维矩阵 II,148. 排序链表
数据结构·c++·算法·leetcode·链表·矩阵
辞半夏丶北笙3 小时前
最近最少使用算法(LRU最近最少使用)缓存替换算法
java·算法·缓存