力扣295. 数据流的中位数

优先队列

  • 思路:
    • 中位数是排序中间的数值:S1.M.S2
    • 可以使用两个优先队列来存放两边的数值,总是使得左侧的堆顶是最大的,右侧的堆顶是最小的,即使用大顶堆存放 S1,使用小顶堆存放S2,使得两个队列的 size 维持"平衡",则中位数就会在两个堆顶"附近"了;
    • 维持两个队列 size 平衡:
      • 数据先 push 的大顶堆,如果是 > M 的数,则会在堆顶;如果是 < M 的数,则会沉入队列中;
      • 然后将堆顶的数 push 到小顶堆,如果是 > M 的数,会沉入队列;如果是 < M 的数,会在堆顶;
      • 将大顶堆的堆顶 pop;(因为已经 push 到小顶堆)
      • 判断一下两个队列的size,如果大顶堆的 size 少了,将小顶堆的堆顶"漏"到大顶堆;(可以将两个队列组合成漏斗,更直观)
    • 此时的中位数:
      • 如果大顶堆 size 多,则中位数是其堆顶;
      • 否则,为两个堆顶的均值;
cpp 复制代码
class MedianFinder {
public:
    MedianFinder() {

    }
    
    void addNum(int num) {
        low.push(num);
        high.push(low.top());
        low.pop();

        if (low.size() < high.size()) {
            low.push(high.top());
            high.pop();
        }
    }
    
    double findMedian() {
        if (low.size() > high.size()) {
            return low.top();
        }

        return (low.top() + high.top()) / 2.0;
    }

private:
    std::priority_queue<int, std::vector<int>, std::less<int>> low;
    std::priority_queue<int, std::vector<int>, std::greater<int>> high;
};

/**
 * Your MedianFinder object will be instantiated and called as such:
 * MedianFinder* obj = new MedianFinder();
 * obj->addNum(num);
 * double param_2 = obj->findMedian();
 */
相关推荐
EnigmaCoder7 分钟前
蓝桥杯刷题周计划(第二周)
学习·算法·蓝桥杯
黑金IT11 分钟前
深入理解人脸特征向量及图片转换方法与开发架构
算法·架构
HP-Patience26 分钟前
决策树 vs 神经网络:何时使用?
神经网络·算法·决策树
AI很强27 分钟前
matlab常见的配图代码实现1
开发语言·算法·matlab
飞川00132 分钟前
🚀 力扣热题 78:子集(详细解析)
算法
FreemanGordon40 分钟前
Java volatile 关键字
java
北京_宏哥41 分钟前
《手把手教你》系列基础篇(九十三)-java+ selenium自动化测试-框架设计基础-POM设计模式实现-上篇(详解教程)
java·前端·selenium
北京_宏哥1 小时前
《手把手教你》系列基础篇(九十二)-java+ selenium自动化测试-框架设计基础-POM设计模式简介(详解教程)
java·selenium·前端工程化
*.✧屠苏隐遥(ノ◕ヮ◕)ノ*.✧1 小时前
C语言_数据结构总结6:链式栈
c语言·开发语言·数据结构·算法·链表·visualstudio·visual studio
当归10241 小时前
微服务与消息队列RabbitMQ
java·微服务