力扣295. 数据流的中位数

优先队列

  • 思路:
    • 中位数是排序中间的数值:S1.M.S2
    • 可以使用两个优先队列来存放两边的数值,总是使得左侧的堆顶是最大的,右侧的堆顶是最小的,即使用大顶堆存放 S1,使用小顶堆存放S2,使得两个队列的 size 维持"平衡",则中位数就会在两个堆顶"附近"了;
    • 维持两个队列 size 平衡:
      • 数据先 push 的大顶堆,如果是 > M 的数,则会在堆顶;如果是 < M 的数,则会沉入队列中;
      • 然后将堆顶的数 push 到小顶堆,如果是 > M 的数,会沉入队列;如果是 < M 的数,会在堆顶;
      • 将大顶堆的堆顶 pop;(因为已经 push 到小顶堆)
      • 判断一下两个队列的size,如果大顶堆的 size 少了,将小顶堆的堆顶"漏"到大顶堆;(可以将两个队列组合成漏斗,更直观)
    • 此时的中位数:
      • 如果大顶堆 size 多,则中位数是其堆顶;
      • 否则,为两个堆顶的均值;
cpp 复制代码
class MedianFinder {
public:
    MedianFinder() {

    }
    
    void addNum(int num) {
        low.push(num);
        high.push(low.top());
        low.pop();

        if (low.size() < high.size()) {
            low.push(high.top());
            high.pop();
        }
    }
    
    double findMedian() {
        if (low.size() > high.size()) {
            return low.top();
        }

        return (low.top() + high.top()) / 2.0;
    }

private:
    std::priority_queue<int, std::vector<int>, std::less<int>> low;
    std::priority_queue<int, std::vector<int>, std::greater<int>> high;
};

/**
 * Your MedianFinder object will be instantiated and called as such:
 * MedianFinder* obj = new MedianFinder();
 * obj->addNum(num);
 * double param_2 = obj->findMedian();
 */
相关推荐
吾日三省吾码30 分钟前
JVM 性能调优
java
LNTON羚通1 小时前
摄像机视频分析软件下载LiteAIServer视频智能分析平台玩手机打电话检测算法技术的实现
算法·目标检测·音视频·监控·视频监控
弗拉唐2 小时前
springBoot,mp,ssm整合案例
java·spring boot·mybatis
oi772 小时前
使用itextpdf进行pdf模版填充中文文本时部分字不显示问题
java·服务器
少说多做3432 小时前
Android 不同情况下使用 runOnUiThread
android·java
知兀2 小时前
Java的方法、基本和引用数据类型
java·笔记·黑马程序员
哭泣的眼泪4082 小时前
解析粗糙度仪在工业制造及材料科学和建筑工程领域的重要性
python·算法·django·virtualenv·pygame
清炒孔心菜3 小时前
每日一题 LCR 078. 合并 K 个升序链表
leetcode
蓝黑20203 小时前
IntelliJ IDEA常用快捷键
java·ide·intellij-idea