力扣295. 数据流的中位数

优先队列

  • 思路:
    • 中位数是排序中间的数值:S1.M.S2
    • 可以使用两个优先队列来存放两边的数值,总是使得左侧的堆顶是最大的,右侧的堆顶是最小的,即使用大顶堆存放 S1,使用小顶堆存放S2,使得两个队列的 size 维持"平衡",则中位数就会在两个堆顶"附近"了;
    • 维持两个队列 size 平衡:
      • 数据先 push 的大顶堆,如果是 > M 的数,则会在堆顶;如果是 < M 的数,则会沉入队列中;
      • 然后将堆顶的数 push 到小顶堆,如果是 > M 的数,会沉入队列;如果是 < M 的数,会在堆顶;
      • 将大顶堆的堆顶 pop;(因为已经 push 到小顶堆)
      • 判断一下两个队列的size,如果大顶堆的 size 少了,将小顶堆的堆顶"漏"到大顶堆;(可以将两个队列组合成漏斗,更直观)
    • 此时的中位数:
      • 如果大顶堆 size 多,则中位数是其堆顶;
      • 否则,为两个堆顶的均值;
cpp 复制代码
class MedianFinder {
public:
    MedianFinder() {

    }
    
    void addNum(int num) {
        low.push(num);
        high.push(low.top());
        low.pop();

        if (low.size() < high.size()) {
            low.push(high.top());
            high.pop();
        }
    }
    
    double findMedian() {
        if (low.size() > high.size()) {
            return low.top();
        }

        return (low.top() + high.top()) / 2.0;
    }

private:
    std::priority_queue<int, std::vector<int>, std::less<int>> low;
    std::priority_queue<int, std::vector<int>, std::greater<int>> high;
};

/**
 * Your MedianFinder object will be instantiated and called as such:
 * MedianFinder* obj = new MedianFinder();
 * obj->addNum(num);
 * double param_2 = obj->findMedian();
 */
相关推荐
忧郁的Mr.Li1 小时前
SpringBoot中实现多数据源配置
java·spring boot·后端
啊森要自信1 小时前
CANN ops-cv:AI 硬件端视觉算法推理训练的算子性能调优与实战应用详解
人工智能·算法·cann
yq1982043011561 小时前
静思书屋:基于Java Web技术栈构建高性能图书信息平台实践
java·开发语言·前端
一个public的class2 小时前
你在浏览器输入一个网址,到底发生了什么?
java·开发语言·javascript
有位神秘人2 小时前
kotlin与Java中的单例模式总结
java·单例模式·kotlin
golang学习记2 小时前
IntelliJ IDEA 2025.3 重磅发布:K2 模式全面接管 Kotlin —— 告别 K1,性能飙升 40%!
java·kotlin·intellij-idea
爬山算法2 小时前
Hibernate(89)如何在压力测试中使用Hibernate?
java·压力测试·hibernate
仟濹2 小时前
算法打卡day2 (2026-02-07 周五) | 算法: DFS | 3_卡码网99_计数孤岛_DFS
算法·深度优先
驭渊的小故事2 小时前
简单模板笔记
数据结构·笔记·算法
YuTaoShao2 小时前
【LeetCode 每日一题】1653. 使字符串平衡的最少删除次数——(解法一)前后缀分解
算法·leetcode·职场和发展