分类预测 | Matlab实现OOA-SVM鱼鹰算法优化支持向量机的多变量输入数据分类预测

分类预测 | Matlab实现OOA-SVM鱼鹰算法优化支持向量机的多变量输入数据分类预测

目录

    • [分类预测 | Matlab实现OOA-SVM鱼鹰算法优化支持向量机的多变量输入数据分类预测](#分类预测 | Matlab实现OOA-SVM鱼鹰算法优化支持向量机的多变量输入数据分类预测)

分类效果


基本描述

1.Matlab实现OOA-SVM鱼鹰算法优化支持向量机的多变量输入数据分类预测(完整源码和数据) 优化支持向量机核函数参数c和g。

2.多特征输入单输出的二分类及多分类模型。运行环境matlab2018。

3.语言为matlab,含分类效果图,迭代优化图,混淆矩阵图。

4.直接替换数据即可使用,保证程序可正常运行。运行环境MATLAB2018及以上。

5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

程序设计

  • 完整程序和数据获取方式私信博主回复Matlab实现OOA-SVM鱼鹰算法优化支持向量机的多变量输入数据分类预测
clike 复制代码
%%  参数设置
% 定义优化参数的个数,在该场景中,优化参数的个数dim为2 。
% 定义优化参数的上下限,如c的范围是[0.01, 1], g的范围是[2^-5, 2^5],那么参数的下限lb=[0.01, 2^-5];参数的上限ub=[1, 2^5]。
%目标函数
fun = @getObjValue; 
% 优化参数的个数 (c、g)
dim = 2;
% 优化参数的取值下限
lb = [10^-1, 1];
ub = [10^2, 2^8];

%%  参数设置
pop =6; %种群数量
maxgen=100;%最大迭代次数
%% 优化(这里主要调用函数)
c = Best_pos(1, 1);  
g = Best_pos(1, 2); 
toc
% 用优化得到c,g训练和测试
cmd = ['-s 0 -t 2 ', '-c ', num2str(c), ' -g ', num2str(g), ' -q'];
model = libsvmtrain(T_train, P_train, cmd);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502

[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

相关推荐
孤独且没人爱的纸鹤16 小时前
【机器学习】深入无监督学习分裂型层次聚类的原理、算法结构与数学基础全方位解读,深度揭示其如何在数据空间中构建层次化聚类结构
人工智能·python·深度学习·机器学习·支持向量机·ai·聚类
ALISHENGYA2 天前
用Python实现SVM搭建金融反诈模型(含调试运行)
算法·机器学习·支持向量机·svm
KeyPan5 天前
【机器学习:三十三(一)、支持向量机】
人工智能·神经网络·算法·机器学习·支持向量机·数据挖掘·迁移学习
yuanbenshidiaos5 天前
【大数据】机器学习------支持向量机(SVM)
大数据·机器学习·支持向量机
笔写落去5 天前
统计学习方法(第二版) 第七章 支持向量机 (第三节)
人工智能·算法·机器学习·支持向量机
浊酒南街6 天前
SVM模型(理论知识2)
人工智能·机器学习·支持向量机
KeyPan6 天前
【机器学习:三十三(二)、支持向量机(SVM)的核函数:概念、类型与应用】
人工智能·神经网络·算法·机器学习·支持向量机·数据挖掘
笔写落去6 天前
统计学习方法(第二版) 第七章 支持向量机(第二节)
人工智能·算法·机器学习·支持向量机
笔写落去6 天前
统计学习方法(第二版) 第七章 支持向量机 (第四节)
算法·机器学习·支持向量机
Naion6 天前
统计学习算法——支持向量机的基本概念
学习·算法·支持向量机