分类预测 | Matlab实现OOA-SVM鱼鹰算法优化支持向量机的多变量输入数据分类预测

分类预测 | Matlab实现OOA-SVM鱼鹰算法优化支持向量机的多变量输入数据分类预测

目录

    • [分类预测 | Matlab实现OOA-SVM鱼鹰算法优化支持向量机的多变量输入数据分类预测](#分类预测 | Matlab实现OOA-SVM鱼鹰算法优化支持向量机的多变量输入数据分类预测)

分类效果


基本描述

1.Matlab实现OOA-SVM鱼鹰算法优化支持向量机的多变量输入数据分类预测(完整源码和数据) 优化支持向量机核函数参数c和g。

2.多特征输入单输出的二分类及多分类模型。运行环境matlab2018。

3.语言为matlab,含分类效果图,迭代优化图,混淆矩阵图。

4.直接替换数据即可使用,保证程序可正常运行。运行环境MATLAB2018及以上。

5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

程序设计

  • 完整程序和数据获取方式私信博主回复Matlab实现OOA-SVM鱼鹰算法优化支持向量机的多变量输入数据分类预测
clike 复制代码
%%  参数设置
% 定义优化参数的个数,在该场景中,优化参数的个数dim为2 。
% 定义优化参数的上下限,如c的范围是[0.01, 1], g的范围是[2^-5, 2^5],那么参数的下限lb=[0.01, 2^-5];参数的上限ub=[1, 2^5]。
%目标函数
fun = @getObjValue; 
% 优化参数的个数 (c、g)
dim = 2;
% 优化参数的取值下限
lb = [10^-1, 1];
ub = [10^2, 2^8];

%%  参数设置
pop =6; %种群数量
maxgen=100;%最大迭代次数
%% 优化(这里主要调用函数)
c = Best_pos(1, 1);  
g = Best_pos(1, 2); 
toc
% 用优化得到c,g训练和测试
cmd = ['-s 0 -t 2 ', '-c ', num2str(c), ' -g ', num2str(g), ' -q'];
model = libsvmtrain(T_train, P_train, cmd);

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128690229

相关推荐
Chef_Chen2 天前
数据科学每日总结--Day50--机器学习
人工智能·机器学习·支持向量机
YRYDZFtyVKg3 天前
配电网可靠性评估程序:Matlab实现之路
支持向量机
weixin_395448914 天前
draw_tensor2psd.py0126v1
支持向量机·逻辑回归·启发式算法
weixin_395448915 天前
draw_tensor2psd.py——0126v2
支持向量机·逻辑回归·启发式算法
救救孩子把5 天前
63-机器学习与大模型开发数学教程-5-10 最优化在机器学习中的典型应用(逻辑回归、SVM)
机器学习·支持向量机·逻辑回归
Brduino脑机接口技术答疑8 天前
脑机接口数据处理连载(九) 经典分类算法(一):支持向量机(SVM)数据建模——基于脑机接口(BCI)运动想象任务实战
支持向量机·分类·数据挖掘
最低调的奢华10 天前
支持向量机和xgboost及卡方分箱解释
算法·机器学习·支持向量机
Lips61110 天前
第六章 支持向量机
算法·机器学习·支持向量机
BHXDML11 天前
第五章:支持向量机
算法·机器学习·支持向量机
Allen_LVyingbo12 天前
多智能体协作驱动的多模态医疗大模型系统:RAG–KAG双路径知识增强与架构的设计与验证(上)
支持向量机·架构·知识图谱·健康医疗·gpu算力·迭代加深