[足式机器人]Part2 Dr. CAN学习笔记-数学基础Ch0-7欧拉公式的证明

本文仅供学习使用
本文参考:
B站:DR_CAN

Dr. CAN学习笔记-数学基础Ch0-7欧拉公式的证明


e i θ = cos ⁡ θ + sin ⁡ θ i , i = − 1 e^{i\theta}=\cos \theta +\sin \theta i,i=\sqrt{-1} eiθ=cosθ+sinθi,i=−1

证明:
f ( θ ) = e i θ cos ⁡ θ + sin ⁡ θ i f ′ ( θ ) = i e i θ ( cos ⁡ θ + sin ⁡ θ i ) − e i θ ( − sin ⁡ θ + cos ⁡ θ i ) ( cos ⁡ θ + sin ⁡ θ i ) 2 = 0 ⇒ f ( θ ) = c o n s tan ⁡ t f ( θ ) = f ( 0 ) = e i 0 cos ⁡ 0 + sin ⁡ 0 i = 1 ⇒ e i θ cos ⁡ θ + sin ⁡ θ i = 1 ⇒ e i θ = cos ⁡ θ + sin ⁡ θ i f\left( \theta \right) =\frac{e^{i\theta}}{\cos \theta +\sin \theta i} \\ f^{\prime}\left( \theta \right) =\frac{ie^{i\theta}\left( \cos \theta +\sin \theta i \right) -e^{i\theta}\left( -\sin \theta +\cos \theta i \right)}{\left( \cos \theta +\sin \theta i \right) ^2}=0 \\ \Rightarrow f\left( \theta \right) =\mathrm{cons}\tan\mathrm{t} \\ f\left( \theta \right) =f\left( 0 \right) =\frac{e^{i0}}{\cos 0+\sin 0i}=1\Rightarrow \frac{e^{i\theta}}{\cos \theta +\sin \theta i}=1 \\ \Rightarrow e^{i\theta}=\cos \theta +\sin \theta i f(θ)=cosθ+sinθieiθf′(θ)=(cosθ+sinθi)2ieiθ(cosθ+sinθi)−eiθ(−sinθ+cosθi)=0⇒f(θ)=constantf(θ)=f(0)=cos0+sin0iei0=1⇒cosθ+sinθieiθ=1⇒eiθ=cosθ+sinθi

求解: sin ⁡ x = 2 \sin x=2 sinx=2

令: sin ⁡ z = 2 = c , z ∈ C \sin z=2=c,z\in \mathbb{C} sinz=2=c,z∈C
{ e i z = cos ⁡ z + sin ⁡ z i e i ( − z ) = cos ⁡ z − sin ⁡ z i ⇒ e i z − e − i z = 2 sin ⁡ z i \begin{cases} e^{iz}=\cos z+\sin zi\\ e^{i\left( -z \right)}=\cos z-\sin zi\\ \end{cases}\Rightarrow e^{iz}-e^{-iz}=2\sin zi {eiz=cosz+sinziei(−z)=cosz−sinzi⇒eiz−e−iz=2sinzi
∴ sin ⁡ z = e i z − e − i z 2 i = c ⇒ e a i − b − e b − a i 2 i = e a i e − b − e b e − a i 2 i = c \therefore \sin z=\frac{e^{iz}-e^{-iz}}{2i}=c\Rightarrow \frac{e^{ai-b}-e^{b-ai}}{2i}=\frac{e^{ai}e^{-b}-e^be^{-ai}}{2i}=c ∴sinz=2ieiz−e−iz=c⇒2ieai−b−eb−ai=2ieaie−b−ebe−ai=c

且有: { e i a = cos ⁡ a + sin ⁡ a i e i ( − a ) = cos ⁡ a − sin ⁡ a i \begin{cases} e^{ia}=\cos a+\sin ai\\ e^{i\left( -a \right)}=\cos a-\sin ai\\ \end{cases} {eia=cosa+sinaiei(−a)=cosa−sinai
⇒ e − b ( cos ⁡ a + sin ⁡ a i ) − e b ( cos ⁡ a − sin ⁡ a i ) 2 i = ( e − b − e b ) cos ⁡ a − ( e − b + e b ) sin ⁡ a i 2 i = c ⇒ 1 2 ( e b − e − b ) cos ⁡ a i + 1 2 ( e − b + e b ) sin ⁡ a = c = c + 0 i \Rightarrow \frac{e^{-b}\left( \cos a+\sin ai \right) -e^b\left( \cos a-\sin ai \right)}{2i}=\frac{\left( e^{-b}-e^b \right) \cos a-\left( e^{-b}+e^b \right) \sin ai}{2i}=c \\ \Rightarrow \frac{1}{2}\left( e^b-e^{-b} \right) \cos ai+\frac{1}{2}\left( e^{-b}+e^b \right) \sin a=c=c+0i ⇒2ie−b(cosa+sinai)−eb(cosa−sinai)=2i(e−b−eb)cosa−(e−b+eb)sinai=c⇒21(eb−e−b)cosai+21(e−b+eb)sina=c=c+0i
⇒ { 1 2 ( e − b + e b ) sin ⁡ a = c 1 2 ( e b − e − b ) cos ⁡ a = 0 \Rightarrow \begin{cases} \frac{1}{2}\left( e^{-b}+e^b \right) \sin a=c\\ \frac{1}{2}\left( e^b-e^{-b} \right) \cos a=0\\ \end{cases} ⇒{21(e−b+eb)sina=c21(eb−e−b)cosa=0

  • 当 b = 0 b=0 b=0 时, sin ⁡ a = c \sin a=c sina=c 不成立(所设 a , b ∈ R a,b\in \mathbb{R} a,b∈R)
  • 当 cos ⁡ a = 0 \cos a=0 cosa=0 时, 1 2 ( e − b + e b ) = ± c ⇒ 1 + e 2 b ± 2 c e b = 0 \frac{1}{2}\left( e^{-b}+e^b \right) =\pm c\Rightarrow 1+e^{2b}\pm 2ce^b=0 21(e−b+eb)=±c⇒1+e2b±2ceb=0
    设 u = e b > 0 u=e^b>0 u=eb>0 ,则有: u = ± c ± c 2 − 1 u=\pm c\pm \sqrt{c^2-1} u=±c±c2−1
    ∴ b = ln ⁡ ( c ± c 2 − 1 ) \therefore b=\ln \left( c\pm \sqrt{c^2-1} \right) ∴b=ln(c±c2−1 )
    ⇒ z = π 2 + 2 k π + ln ⁡ ( c ± c 2 − 1 ) i = π 2 + 2 k π + ln ⁡ ( 2 ± 3 ) i \Rightarrow z=\frac{\pi}{2}+2k\pi +\ln \left( c\pm \sqrt{c^2-1} \right) i=\frac{\pi}{2}+2k\pi +\ln \left( 2\pm \sqrt{3} \right) i ⇒z=2π+2kπ+ln(c±c2−1 )i=2π+2kπ+ln(2±3 )i
相关推荐
終不似少年遊*1 小时前
华为云计算HCIE笔记05
网络·华为云·云计算·学习笔记·hcie·认证·hcs
終不似少年遊*2 小时前
pyecharts
python·信息可视化·数据分析·学习笔记·pyecharts·使用技巧
覆东流1 天前
PR基本操作二
学习笔记·pr
灰色孤星A1 天前
瑞吉外卖项目学习笔记(四)@TableField(fill = FieldFill.INSERT)公共字段填充、启用/禁用/修改员工信息
java·学习笔记·springboot·瑞吉外卖·黑马程序员·tablefield·公共字段填充
喵~来学编程啦1 天前
【编译原理】编译原理知识点汇总·词法分析器(正则式到NFA、NFA到DFA、DFA最小化)
学习笔记·编译原理
終不似少年遊*3 天前
云计算HCIP-OpenStack01
云原生·云计算·学习笔记·openstack·hcip·虚拟化
喵~来学编程啦3 天前
【编译原理】编译原理知识点汇总·概论与文法
学习笔记·编译原理
还没想好1235 天前
mlr3机器学习AUC的置信区间提取
人工智能·机器学习·r语言·学习笔记
終不似少年遊*6 天前
Python数据结构与算法03
开发语言·数据结构·python·算法·蓝桥杯·学习笔记·dp
終不似少年遊*6 天前
云计算HCIP-OpenStack03
linux·网络·云原生·云计算·学习笔记·openstack·hcip