本文仅供学习使用
本文参考:
B站:DR_CAN
Dr. CAN学习笔记-数学基础Ch0-7欧拉公式的证明
e i θ = cos θ + sin θ i , i = − 1 e^{i\theta}=\cos \theta +\sin \theta i,i=\sqrt{-1} eiθ=cosθ+sinθi,i=−1
证明:
f ( θ ) = e i θ cos θ + sin θ i f ′ ( θ ) = i e i θ ( cos θ + sin θ i ) − e i θ ( − sin θ + cos θ i ) ( cos θ + sin θ i ) 2 = 0 ⇒ f ( θ ) = c o n s tan t f ( θ ) = f ( 0 ) = e i 0 cos 0 + sin 0 i = 1 ⇒ e i θ cos θ + sin θ i = 1 ⇒ e i θ = cos θ + sin θ i f\left( \theta \right) =\frac{e^{i\theta}}{\cos \theta +\sin \theta i} \\ f^{\prime}\left( \theta \right) =\frac{ie^{i\theta}\left( \cos \theta +\sin \theta i \right) -e^{i\theta}\left( -\sin \theta +\cos \theta i \right)}{\left( \cos \theta +\sin \theta i \right) ^2}=0 \\ \Rightarrow f\left( \theta \right) =\mathrm{cons}\tan\mathrm{t} \\ f\left( \theta \right) =f\left( 0 \right) =\frac{e^{i0}}{\cos 0+\sin 0i}=1\Rightarrow \frac{e^{i\theta}}{\cos \theta +\sin \theta i}=1 \\ \Rightarrow e^{i\theta}=\cos \theta +\sin \theta i f(θ)=cosθ+sinθieiθf′(θ)=(cosθ+sinθi)2ieiθ(cosθ+sinθi)−eiθ(−sinθ+cosθi)=0⇒f(θ)=constantf(θ)=f(0)=cos0+sin0iei0=1⇒cosθ+sinθieiθ=1⇒eiθ=cosθ+sinθi
求解: sin x = 2 \sin x=2 sinx=2
令: sin z = 2 = c , z ∈ C \sin z=2=c,z\in \mathbb{C} sinz=2=c,z∈C
{ e i z = cos z + sin z i e i ( − z ) = cos z − sin z i ⇒ e i z − e − i z = 2 sin z i \begin{cases} e^{iz}=\cos z+\sin zi\\ e^{i\left( -z \right)}=\cos z-\sin zi\\ \end{cases}\Rightarrow e^{iz}-e^{-iz}=2\sin zi {eiz=cosz+sinziei(−z)=cosz−sinzi⇒eiz−e−iz=2sinzi
∴ sin z = e i z − e − i z 2 i = c ⇒ e a i − b − e b − a i 2 i = e a i e − b − e b e − a i 2 i = c \therefore \sin z=\frac{e^{iz}-e^{-iz}}{2i}=c\Rightarrow \frac{e^{ai-b}-e^{b-ai}}{2i}=\frac{e^{ai}e^{-b}-e^be^{-ai}}{2i}=c ∴sinz=2ieiz−e−iz=c⇒2ieai−b−eb−ai=2ieaie−b−ebe−ai=c且有: { e i a = cos a + sin a i e i ( − a ) = cos a − sin a i \begin{cases} e^{ia}=\cos a+\sin ai\\ e^{i\left( -a \right)}=\cos a-\sin ai\\ \end{cases} {eia=cosa+sinaiei(−a)=cosa−sinai
⇒ e − b ( cos a + sin a i ) − e b ( cos a − sin a i ) 2 i = ( e − b − e b ) cos a − ( e − b + e b ) sin a i 2 i = c ⇒ 1 2 ( e b − e − b ) cos a i + 1 2 ( e − b + e b ) sin a = c = c + 0 i \Rightarrow \frac{e^{-b}\left( \cos a+\sin ai \right) -e^b\left( \cos a-\sin ai \right)}{2i}=\frac{\left( e^{-b}-e^b \right) \cos a-\left( e^{-b}+e^b \right) \sin ai}{2i}=c \\ \Rightarrow \frac{1}{2}\left( e^b-e^{-b} \right) \cos ai+\frac{1}{2}\left( e^{-b}+e^b \right) \sin a=c=c+0i ⇒2ie−b(cosa+sinai)−eb(cosa−sinai)=2i(e−b−eb)cosa−(e−b+eb)sinai=c⇒21(eb−e−b)cosai+21(e−b+eb)sina=c=c+0i
⇒ { 1 2 ( e − b + e b ) sin a = c 1 2 ( e b − e − b ) cos a = 0 \Rightarrow \begin{cases} \frac{1}{2}\left( e^{-b}+e^b \right) \sin a=c\\ \frac{1}{2}\left( e^b-e^{-b} \right) \cos a=0\\ \end{cases} ⇒{21(e−b+eb)sina=c21(eb−e−b)cosa=0
- 当 b = 0 b=0 b=0 时, sin a = c \sin a=c sina=c 不成立(所设 a , b ∈ R a,b\in \mathbb{R} a,b∈R)
- 当 cos a = 0 \cos a=0 cosa=0 时, 1 2 ( e − b + e b ) = ± c ⇒ 1 + e 2 b ± 2 c e b = 0 \frac{1}{2}\left( e^{-b}+e^b \right) =\pm c\Rightarrow 1+e^{2b}\pm 2ce^b=0 21(e−b+eb)=±c⇒1+e2b±2ceb=0
设 u = e b > 0 u=e^b>0 u=eb>0 ,则有: u = ± c ± c 2 − 1 u=\pm c\pm \sqrt{c^2-1} u=±c±c2−1
∴ b = ln ( c ± c 2 − 1 ) \therefore b=\ln \left( c\pm \sqrt{c^2-1} \right) ∴b=ln(c±c2−1 )
⇒ z = π 2 + 2 k π + ln ( c ± c 2 − 1 ) i = π 2 + 2 k π + ln ( 2 ± 3 ) i \Rightarrow z=\frac{\pi}{2}+2k\pi +\ln \left( c\pm \sqrt{c^2-1} \right) i=\frac{\pi}{2}+2k\pi +\ln \left( 2\pm \sqrt{3} \right) i ⇒z=2π+2kπ+ln(c±c2−1 )i=2π+2kπ+ln(2±3 )i