机器学习---线性回归案例

1、梯度下降法调节参数

2、模拟过拟合

训练模型都会将数据集分为两部分,一般会将0.8比例的数据集作为训练集,将0.2比例的数据集作为测试集,来训练模型。模型过拟合就是训练出来的模型在训练集上表现很好,但是在测试集上表现较差的一种现象,也就是模型对已有的训练集数据拟合的非常好(误差值等于0),对于测试集数据拟合的非常差,模型的泛化能力比较差。

如何判断模型发生过拟合?

训练出模型后,可以在训练集中测试下模型的正确率,在测试集中测试下模型的正确率,如果两者差别很大(测试集正确率小,训练集正确率大),那么模型就有可能发生了过拟合。

3、Spark Mllib线性回归案例

复制代码
object LinearRegression {

  def main(args: Array[String]) {
    // 构建Spark对象
    val conf = new SparkConf().setAppName("LinearRegressionWithSGD").setMaster("local")
    val sc = new SparkContext(conf)
    Logger.getRootLogger.setLevel(Level.WARN)
//        sc.setLogLevel("WARN")

    //读取样本数据
    val data_path1 = "lpsa.data"
    val data = sc.textFile(data_path1)
    val examples = data.map { line =>
      val parts = line.split(',')
      val y = parts(0)
      val xs = parts(1)
      LabeledPoint(parts(0).toDouble, Vectors.dense(parts(1).split(' ').map(_.toDouble)))
    }.cache()

    val train2TestData = examples.randomSplit(Array(0.8, 0.2), 1)

    /*
     *  迭代次数
     *  训练一个多元线性回归模型收敛(停止迭代)条件:
     *  	1、error值小于用户指定的error值
     *  	2、达到一定的迭代次数
     */
    val numIterations = 100

    //在每次迭代的过程中 梯度下降算法的下降步长大小    0.1 0.2 0.3 0.4
    val stepSize = 1

    
    val miniBatchFraction = 1
    val lrs = new LinearRegressionWithSGD()
    //让训练出来的模型有w0参数,就是由截距
    lrs.setIntercept(true)
    //设置步长
    lrs.optimizer.setStepSize(stepSize)
    //设置迭代次数
    lrs.optimizer.setNumIterations(numIterations)
    //每一次下山后,是否计算所有样本的误差值,1代表所有样本,默认就是1.0
    lrs.optimizer.setMiniBatchFraction(miniBatchFraction)

    val model = lrs.run(train2TestData(0))
    println(model.weights)
    println(model.intercept)

    // 对样本进行测试
    val prediction = model.predict(train2TestData(1).map(_.features))
    val predictionAndLabel = prediction.zip(train2TestData(1).map(_.label))
    
    val print_predict = predictionAndLabel.take(20)
    println("prediction" + "\t" + "label")
    for (i <- 0 to print_predict.length - 1) {
      println(print_predict(i)._1 + "\t" + print_predict(i)._2)
    }
    
    // 计算测试集平均误差
    val loss = predictionAndLabel.map {
      case (p, v) =>
        val err = p - v
        Math.abs(err)
    }.reduce(_ + _)
    val error = loss / train2TestData(1).count
    println(s"Test RMSE = " + error)
    // 模型保存
    val ModelPath = "model"
    model.save(sc, ModelPath)
//    val sameModel = LinearRegressionModel.load(sc, ModelPath)
    sc.stop()
  }

}
相关推荐
大佬,救命!!!18 分钟前
最新的python3.14版本下仿真环境配置深度学习机器学习相关
开发语言·人工智能·python·深度学习·机器学习·学习笔记·环境配置
工业机器视觉设计和实现23 分钟前
用caffe做个人脸识别
人工智能·深度学习·caffe
paperxie_xiexuo35 分钟前
从研究问题到分析初稿:深度解析PaperXie AI科研工具中数据分析模块在学术写作场景下的辅助逻辑与技术实现路径
人工智能·数据挖掘·数据分析
T***u33340 分钟前
Java机器学习框架
java·开发语言·机器学习
一水鉴天1 小时前
整体设计 定稿 之9 拼语言工具设计之前 的 备忘录仪表盘(CodeBuddy)
人工智能·架构·公共逻辑
vvoennvv1 小时前
【Python TensorFlow】 CNN-GRU卷积神经网络-门控循环神经网络时序预测算法(附代码)
python·神经网络·机器学习·cnn·gru·tensorflow
IT_陈寒1 小时前
Python性能提升50%:这5个隐藏技巧让你的代码快如闪电⚡
前端·人工智能·后端
AI大模型学徒2 小时前
NLP基础(九)_N-gram模型
人工智能·自然语言处理·nlp·n-gram
极客BIM工作室2 小时前
理清 BERT 中 [CLS] 向量的核心逻辑:训练双向更新与推理作用不矛盾
人工智能·机器学习·bert