Dexie 查询sql速度优化

Dexie查询速度慢的原因主要一个优化点是复杂查询下的count执行。

以下摘自Dexie官方文档:https://dexie.org/docs/Collection/Collection.count()

If executed on simple queries, the native IndexedDB ObjectStore

count() method will be called (fast execution). If advanced queries

are used, the implementation has to execute a query to iterate all

items and count them manually. Examples where count() will be fast

javascript 复制代码
db.[table].where(index).equals(value).count()
db.[table].where(index).above(value).count()
db.[table].where(index).below(value).count()
db.[table].where(index).between(a,b).count()
db.[table].where(index).startsWith(value).count() 


// The reason it is fast in above samples is that they map to basic
// IDBKeyRange methods only(), lowerBound(), upperBound(), and bound().

// Examples where count() will have to count manually:
db.[table].where(index).equalsIgnoreCase(value).count()
db.[table].where(index).startsWithIgnoreCase(value).count()
db.[table].where(index).anyOf(valueArray).count()
db.[table].where(index).above(value).and(filterFunction).count()
db.[table].where(index1).above(value1).or(index2).below(value2).count()

官方文档中也说明了count在复杂查询的情况下统计速度会变慢,至于会变慢多少呢?个人做过对比在5000条数据量的情况下,进行统计大概需要花费3秒左右,而进行同样的查询只需要几十毫秒。

因此在使用Dexie进行复杂查询且需要进行分页操作时,应该避免进行重复的count操作。其中一个解决办法就是加入筛选条件的缓存,当缓存的条件不变时不进行count操作而直接使用之前count出来的数据。

例如:

项目中的一个例子


项目背景:electron + node + ng-zorro的一个项目。项目需要离线处理大量的数据,没办法加后端,只能在纯前端的项目里进行数据的加载、存储、查询等,且这个项目还要支持数据的筛选、分页。在这种情况下若直接使用Dexie进行count查询总数后再进行分页查询就会导致每次的查询都非常的慢。因此使用了缓存,每次在筛选的时候判断筛选条件是否发送变化,若发生了变化则重新进行count,若没有变化则视为进行翻页操作,仍使用之前的count。这样就只会在第一次用搜索条件进行查询的时候出现卡顿,其余时间较为流畅。

相关推荐
dazhong201243 分钟前
PLSQL 客户端连接 Oracle 数据库配置
数据库·oracle
路在脚下@1 小时前
spring boot的配置文件属性注入到类的静态属性
java·spring boot·sql
了一li3 小时前
Qt中的QProcess与Boost.Interprocess:实现多进程编程
服务器·数据库·qt
码农君莫笑3 小时前
信管通低代码信息管理系统应用平台
linux·数据库·windows·低代码·c#·.net·visual studio
别致的影分身4 小时前
使用C语言连接MySQL
数据库·mysql
京东零售技术5 小时前
“慢”增长时代的企业数据体系建设:超越数据中台
数据库
sdaxue.com5 小时前
帝国CMS:如何去掉帝国CMS登录界面的认证码登录
数据库·github·网站·帝国cms·认证码
o(╥﹏╥)6 小时前
linux(ubuntu )卡死怎么强制重启
linux·数据库·ubuntu·系统安全
阿里嘎多学长6 小时前
docker怎么部署高斯数据库
运维·数据库·docker·容器
Yuan_o_7 小时前
Linux 基本使用和程序部署
java·linux·运维·服务器·数据库·后端