线性代数基础【1】行列式

第一节 行列式的基本概念和性质

一、基本概念

①逆序

1,2和2,1是一对逆序

②逆序数

1,2,3,5,4的逆序数为1;1,3,2,5,4逆序数为4;

③行列式

④余子数和代数余子数

行列式挖掉一个数(例如aij),将原行列式去掉i行j列的行列式M,则M为余子数,代数余子数记为Aij,如果(i+j)为偶数,Aij=M,如果(i+j)为奇数,则Aij=-M

知识补充:使用定义法计算行列式

以三阶行列式为例:

符号确定,列序号的逆序数的个数为奇数,则为负号,逆序数的个数为偶数,则为正号

所以 D = a11 * a22 * a33 + a12 * a23 * a31 + a13 * a21 * a32 - a11 * a23 * a32 - a12 * a21 * a33 - a13 * a22 * a31

二、几个特殊的行列式

①对角、上(下)三角行列式

②范德蒙行列式

三、行列式的计算性质

(一)一般行列式转化为上(下)三角行列式的性质

①行列式和置换行列式相等

置换行列式:行列交换,aij和aji交换

②对调两行(或两列),改变符号

③对某行(或某列)可以直接把公因子提出来

推论1:如果某行(或某列)全为0,那么行列式结果为0

推论2:如果某两行(或某两列)相同,那么行列式结果为0

推论3:如果某两行(或某两列)成比例,那么行列式结果为0

④行列式某行(或列)的每个元素皆为两数之和时,行列式可分解为两个行列式之和,即:

⑤行列式的某行(或列)的倍数加到另一行(或列),行列式不变,即

k为任意常数

(二)行列式的降阶性质

1.行列式等于行列式某行(或列)元素与其对应的代数余子式之积的和,即

2.行列式的某行(或列)元素与另一行(或列)对应元素的代数余子式之积的和为零即

第二节 行列式的应用-克拉默法则

相关推荐
X-future42617 小时前
院校机试刷题第六天:1134矩阵翻转、1052学生成绩管理、1409对称矩阵
线性代数·算法·矩阵
九州ip动态1 天前
自媒体工作室如何矩阵?自媒体矩阵养号策略
线性代数·矩阵·媒体
田梓燊1 天前
数学复习笔记 19
笔记·线性代数·机器学习
田梓燊2 天前
数学复习笔记 12
笔记·线性代数·机器学习
jerry6093 天前
LLM笔记(六)线性代数
笔记·学习·线性代数·自然语言处理
田梓燊3 天前
数学复习笔记 14
笔记·线性代数·矩阵
田梓燊3 天前
数学复习笔记 15
笔记·线性代数·机器学习
Magnum Lehar3 天前
3d游戏引擎的math矩阵实现
线性代数·矩阵·游戏引擎
HappyAcmen3 天前
线代第二章矩阵第九、十节:初等变换、矩阵的标准形、阶梯形与行最简阶梯形、初等矩阵
笔记·学习·线性代数·矩阵
人类发明了工具4 天前
【优化算法】协方差矩阵自适应进化策略(Covariance Matrix Adaptation Evolution Strategy,CMA-ES)
线性代数·算法·矩阵·cma-es