线性代数基础【1】行列式

第一节 行列式的基本概念和性质

一、基本概念

①逆序

1,2和2,1是一对逆序

②逆序数

1,2,3,5,4的逆序数为1;1,3,2,5,4逆序数为4;

③行列式

④余子数和代数余子数

行列式挖掉一个数(例如aij),将原行列式去掉i行j列的行列式M,则M为余子数,代数余子数记为Aij,如果(i+j)为偶数,Aij=M,如果(i+j)为奇数,则Aij=-M

知识补充:使用定义法计算行列式

以三阶行列式为例:

符号确定,列序号的逆序数的个数为奇数,则为负号,逆序数的个数为偶数,则为正号

所以 D = a11 * a22 * a33 + a12 * a23 * a31 + a13 * a21 * a32 - a11 * a23 * a32 - a12 * a21 * a33 - a13 * a22 * a31

二、几个特殊的行列式

①对角、上(下)三角行列式

②范德蒙行列式

三、行列式的计算性质

(一)一般行列式转化为上(下)三角行列式的性质

①行列式和置换行列式相等

置换行列式:行列交换,aij和aji交换

②对调两行(或两列),改变符号

③对某行(或某列)可以直接把公因子提出来

推论1:如果某行(或某列)全为0,那么行列式结果为0

推论2:如果某两行(或某两列)相同,那么行列式结果为0

推论3:如果某两行(或某两列)成比例,那么行列式结果为0

④行列式某行(或列)的每个元素皆为两数之和时,行列式可分解为两个行列式之和,即:

⑤行列式的某行(或列)的倍数加到另一行(或列),行列式不变,即

k为任意常数

(二)行列式的降阶性质

1.行列式等于行列式某行(或列)元素与其对应的代数余子式之积的和,即

2.行列式的某行(或列)元素与另一行(或列)对应元素的代数余子式之积的和为零即

第二节 行列式的应用-克拉默法则

相关推荐
劈星斩月1 分钟前
线性代数-3Blue1Brown《线性代数的本质》特征向量与特征值(12)
线性代数·特征值·特征向量·特征方程
池央2 小时前
ops-nn 算子库中的数据布局与混合精度策略:卷积、矩阵乘法与 RNN 的优化实践
rnn·线性代数·矩阵
深鱼~4 小时前
大模型底层算力支撑:ops-math在矩阵乘法上的优化
人工智能·线性代数·矩阵·cann
Zfox_4 小时前
CANN PyPTO 编程范式深度解析:并行张量与 Tile 分块操作的架构原理、内存控制与流水线调度机制
线性代数·矩阵·架构
TechWJ4 小时前
catlass深度解析:Ascend平台的高性能矩阵运算模板库
线性代数·矩阵·ascend·cann·catlass
deep_drink20 小时前
【基础知识一】线性代数的核心:从矩阵变换到 SVD 终极奥义
线性代数·机器学习·矩阵
数智工坊1 天前
【数据结构-特殊矩阵】3.5 特殊矩阵-压缩存储
数据结构·线性代数·矩阵
AI科技星1 天前
张祥前统一场论核心场方程的经典验证-基于电子与质子的求导溯源及力的精确计算
线性代数·算法·机器学习·矩阵·概率论
deep_drink1 天前
【基础知识二】彻底读懂拉普拉斯矩阵 (Laplacian)
人工智能·深度学习·线性代数·矩阵
sonadorje1 天前
标量投影和向量投影
线性代数