《高等数学》(同济大学·第7版)第五章 定积分 第二节微积分基本公式

以下是转换为纯文本的内容:


同学们好!看来大家对"微积分基本公式"的理解还存在一些困惑,我会用更通俗的语言、更直观的例子重新梳理这部分内容,确保大家彻底掌握。我们从"积分上限函数"开始,一步步拆解核心概念。

一、先解决一个具体问题:如何用"简单方法"计算定积分?

问题:计算∫(0到1)x²dx(即曲线y=x²在[0,1]下与x轴围成的面积)。

如果用定积分的定义(黎曼和的极限),需要将区间[0,1]分成n等份,每份宽度Δx=1/n,取右端点xi=i/n(i=1,2,...,n),则黎曼和为:

Sₙ = Σ(i=1到n)(i/n)²·(1/n) = (1/n³)Σ(i=1到n)i²

利用求和公式Σi²=n(n+1)(2n+1)/6,代入得:

Sₙ = (n+1)(2n+1)/(6n²)

当n→∞时,Sₙ→1/3,所以∫(0到1)x²dx=1/3。

但这种方法太繁琐!我们需要更高效的方法------这就是"微积分基本公式"的价值。

二、积分上限函数:从"面积函数"到"原函数"

  1. 积分上限函数的定义
    考虑f(t)=t²在[0,x]上的面积∫(0到x)t²dt。定义:
    Φ(x)=∫(0到x)t²dt
    这个Φ(x)就是积分上限函数(变上限积分)。

关键观察:

  • x=0时,Φ(0)=0
  • x=1时,Φ(1)=1/3
  • x=2时,Φ(2)=8/3
  1. 积分上限函数的导数
    计算Φ'(x):
    Φ'(x)=lim(Δx→0)[Φ(x+Δx)-Φ(x)]/Δx
    = lim(Δx→0)[∫(x到x+Δx)t²dt]/Δx
    根据积分中值定理,存在ξ∈(x,x+Δx)使得:
    = lim(Δx→0)ξ² = x² = f(x)

结论:Φ'(x)=f(x),即Φ(x)是f(x)的一个原函数!

三、微积分基本定理第一部分:原函数的存在性

定理:

若f(x)在[a,b]上连续,则Φ(x)=∫(a到x)f(t)dt在[a,b]上可导,且Φ'(x)=f(x)。

即Φ(x)是f(x)的一个原函数。

四、微积分基本定理第二部分:牛顿-莱布尼茨公式

  1. 问题的转化

    设F(x)是f(x)的任意原函数,则F(x)=Φ(x)+C。

  2. 定理陈述(牛顿-莱布尼茨公式):

    若f(x)在[a,b]上连续,F(x)是f(x)的原函数,则:

    ∫(a到b)f(x)dx = F(b)-F(a)

  3. 直观解释

    定积分值等于原函数在上下限处的差值。

五、用实例验证

例1:计算∫(0到1)x²dx

  • F(x)=(1/3)x³
  • F(1)-F(0)=1/3-0=1/3

例2:计算∫(-1到1)(2x+sinx)dx

  • F(x)=x²-cosx
  • F(1)-F(-1)=(1-cos1)-(1-cos1)=0

例3:计算∫(0到π/2)cosxdx

  • F(x)=sinx
  • F(π/2)-F(0)=1-0=1

六、常见误区与注意事项

  1. 原函数的唯一性

    原函数可以相差常数,但F(b)-F(a)结果不变。

  2. 被积函数的连续性

    要求f(x)在[a,b]上连续。若有间断点需分段积分。

  3. 积分变量的无关性

    积分变量用什么符号不影响结果。

七、总结:微积分基本公式的核心逻辑

  1. 积分上限函数Φ(x)=∫(a到x)f(t)dt是f(x)的原函数
  2. 牛顿-莱布尼茨公式:∫(a到b)f(x)dx=F(b)-F(a)

八、课后练习

练习1:计算∫(1到4)√x dx

提示:F(x)=(2/3)x^(3/2),结果14/3

练习2:计算∫(0到π)sinx dx

提示:F(x)=-cosx,结果2

---、

相关推荐
MowenPan199513 天前
高等数学 9.1多元函数的基本概念
笔记·学习·高等数学
盛世隐者1 个月前
【高等数学】第八章 向量代数与空间解析几何——第三节 平面及其方程
高等数学
盛世隐者1 个月前
【高等数学】第六章 定积分的应用——第二节 定积分在几何学上的应用
高等数学
盛世隐者1 个月前
【高等数学】第七章 微分方程——第五节 可降阶的高阶微分方程
高等数学
盛世隐者2 个月前
【高等数学】第四章 不定积分——第五节 积分表的使用
高等数学
USER_A0013 个月前
高等数学(下)题型笔记(八)空间解析几何与向量代数
笔记·高等数学
没有女朋友的程序员3 个月前
《高等数学》(同济大学·第7版)第四章第一节不定积分的概念与性质
高等数学
没有女朋友的程序员3 个月前
《高等数学》(同济大学·第7版)第四章第二节换元积分法
高等数学
没有女朋友的程序员3 个月前
《高等数学》(同济大学·第7版)第二章第四节“隐函数及由参数方程所确定的函数的导数“
高等数学