LeetCode1423. Maximum Points You Can Obtain from Cards

文章目录

一、题目

There are several cards arranged in a row, and each card has an associated number of points. The points are given in the integer array cardPoints.

In one step, you can take one card from the beginning or from the end of the row. You have to take exactly k cards.

Your score is the sum of the points of the cards you have taken.

Given the integer array cardPoints and the integer k, return the maximum score you can obtain.

Example 1:

Input: cardPoints = [1,2,3,4,5,6,1], k = 3

Output: 12

Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the three cards on the right, giving a final score of 1 + 6 + 5 = 12.

Example 2:

Input: cardPoints = [2,2,2], k = 2

Output: 4

Explanation: Regardless of which two cards you take, your score will always be 4.

Example 3:

Input: cardPoints = [9,7,7,9,7,7,9], k = 7

Output: 55

Explanation: You have to take all the cards. Your score is the sum of points of all cards.

Constraints:

1 <= cardPoints.length <= 105

1 <= cardPoints[i] <= 104

1 <= k <= cardPoints.length

二、题解

从前或后取k个元素和最大,转换为剩余n-k个连续窗口的元素和最小。利用滑动窗口求解。

注意accumulate函数cardPoints[i] - cardPoints[i-windowSize]的写法。

cpp 复制代码
class Solution {
public:
    int maxScore(vector<int>& cardPoints, int k) {
        int n = cardPoints.size();
        int windowSize = n - k;
        int totalSum = accumulate(cardPoints.begin(),cardPoints.end(),0);
        int sum = accumulate(cardPoints.begin(),cardPoints.begin()+windowSize,0);
        int minSum = sum;
        for(int i = windowSize;i < n;i++){
            sum += cardPoints[i] - cardPoints[i-windowSize];
            minSum = min(minSum,sum);
        }
        return totalSum - minSum;
    }
};
相关推荐
逆向菜鸟8 分钟前
【摧毁比特币】椭圆曲线象限细分求k-陈墨仙
python·算法
DolphinDB15 分钟前
DolphinDB 回测插件快速上手
算法
利刃大大33 分钟前
【动态规划:路径问题】最小路径和 && 地下城游戏
算法·动态规划·cpp·路径问题
武大打工仔1 小时前
用 Java 复现哲学家就餐问题
算法
要做朋鱼燕1 小时前
【数据结构】用堆解决TOPK问题
数据结构·算法
minji...1 小时前
C++ string类(STL简介 , string类 , 访问修改字符)
开发语言·c++
Forward♞1 小时前
Qt——文件操作
开发语言·c++·qt
十五年专注C++开发2 小时前
CMake进阶: CMake Modules---简化CMake配置的利器
linux·c++·windows·cmake·自动化构建
秋难降2 小时前
LRU缓存算法(最近最少使用算法)——工业界缓存淘汰策略的 “默认选择”
数据结构·python·算法
tkevinjd2 小时前
图论\dp 两题
leetcode·动态规划·图论