从网页抓取数据到Pandas运算,再到MySQL的大数据处理---提效率篇

前言:

在处理网络数据时,从网页抓取表格数据并分析它们是一项常见任务。这篇文章介绍一种有效的工作流程,包含数据抓取、使用Pandas进行逻辑运算,以及对于大量数据运用MySQL的策略。

抓取并保存数据

当从网页上抓取数据时,直接进行解析或运算可能引入错误且效率低下。我们推荐的方法是使用如BeautifulSoup或Pandas的read_html功能把数据原样抓取下来,然后按照所需进行处理。以下是一个简单的代码示例,展示如何用Pandas抓取网页上的表格数据。
python 复制代码
import pandas as pd

# 假设我们有一个网页URL,其中包含了我们需要抓取的表格
url = 'http://example.com/table.html'

# 使用pd.read_html来读取网页上的表格数据
tables = pd.read_html(url)

# 假设我们需要第一个表格
df = tables[0]
print(df.head())  # 展示表格的前几行数据

使用Pandas进行逻辑运算

对于相对较小的数据集(通常小于1GB,具体视你的内存运算能力而定),可在内存中轻松处理它们,而Pandas 是一个理想的库来执行逻辑运算。
python 复制代码
# 举例来说,假设我们要计算某列的平均值
average_value = df['ColumnName'].mean()

# 或者更复杂的逻辑,比如筛选和分组
filtered_df = df[df['ColumnName'] > threshold]
grouped_df = filtered_df.groupby('OtherColumn').sum()

大数据处理:MySQL

对于大型数据集,存储和运算通常成为问题。在这种情况下,使用关系数据库,如MySQL,进行数据处理是更加高效的。MySQL特别适用于处理大批量的数据。
python 复制代码
import mysql.connector

# 连接到MySQL数据库
conn = mysql.connector.connect(
    host="localhost",
    user="yourusername",
    passwd="yourpassword",
    database="yourdatabase"
)

# 使用Pandas的to_sql方法直接将DataFrame存储到MySQL
df.to_sql('table_name', con=conn, if_exists='replace')

# 关闭连接
conn.close()
如果数据表很大,您还可以选择将数据以JSON格式存储到MySQL,这对于拥有非结构化或半结构化数据的场景非常有用。
sql 复制代码
CREATE TABLE big_data (
  id INT AUTO_INCREMENT PRIMARY KEY,
  json_data JSON
);

在Python中,您可以将DataFrame转为JSON格式,并存储到MySQL中:

python 复制代码
import json

# 假设df是您的大型DataFrame
# 将DataFrame转换为JSON格式
json_records = df.to_json(orient='records')

# 解析JSON字符串为JSON对象
records = json.loads(json_records)

# 连接数据库并插入数据
conn = mysql.connector.connect(
    host="localhost",
    user="yourusername",
    passwd="yourpassword",
    database="yourdatabase"
)
cursor = conn.cursor()

# 插入JSON数据
for record in records:
  sql = "INSERT INTO big_data (json_data) VALUES (%s)"
  val = (json.dumps(record),)
  cursor.execute(sql, val)

conn.commit()
cursor.close()
conn.close()

总结(写在最后的忠告):

大家在干活儿的时候,得选对工具,这一点挺关键的。跟着我干了一阵子的都知道,要是数据量小,就是玩票儿大的,直接上Pandas搞定,手到擒来。但要是数据量一大,这可不是闹着玩的,特别是数据量上了GB的等级,这时候你得考虑一下MySQL这样的大件儿了。
用Pandas当然舒坦,写起来得心应手,但你别忘了,它还是得装在咱们的机子上。而MySQL呢,相比之下就是干活儿重量级的,专门为处理海量数据而生。你得学会根据工作量的大小,用对策略,找对瓶颈在哪儿。商量着来,别让一个大好的项目,因为瓶颈卡着,效率上不去。
数据处理这活儿,讲究的是巧妙和务实。选对工具,对症下药,这样子才能事半功倍,效率翻倍,还能省心。
相关推荐
橙露5 小时前
从零基础到实战:Python 数据分析三剑客(Pandas+NumPy+Matplotlib)核心应用指南
python·数据分析·pandas
清水白石00821 小时前
手写超速 CSV 解析器:利用 multiprocessing 与 mmap 实现 10 倍 Pandas 加速
python·pandas
Hello.Reader3 天前
PyFlink 向量化 UDF(Vectorized UDF)Arrow 批传输原理、pandas 标量/聚合函数、配置与内存陷阱、五种写法一网打尽
python·flink·pandas
Hello.Reader3 天前
PyFlink Table API Data Types DataType 是什么、UDF 类型声明怎么写、Python / Pandas 类型映射一文搞懂
python·php·pandas
Hello.Reader3 天前
PyFlink Table API 用户自定义函数(UDF)通用 UDF vs Pandas UDF、打包部署、open 预加载资源、读取作业参数、单元测试
log4j·pandas
海棠AI实验室4 天前
第十六章:小项目 2 CSV → 清洗 → 统计 → 图表 → 报告输出
pandas
逻极4 天前
数据分析项目:Pandas + SQLAlchemy,从数据库到DataFrame的丝滑实战
python·mysql·数据分析·pandas·sqlalchemy
海棠AI实验室4 天前
第十七章 调试与排错:读懂 Traceback 的方法论
python·pandas·调试
kong79069284 天前
Pandas简介
信息可视化·数据分析·pandas
爱喝可乐的老王4 天前
数据分析实践--数据解析购房关键
信息可视化·数据分析·pandas·matplotlib