LlamIndex二 RAG应用开发

AutoGen)系列后,我又开始了LlamIndex 系列。欢迎查询LlamaIndex 一 简单文档查询 - 掘金 (juejin.cn)了解LlamIndex,今天我们来看看LlamIndex的拿手戏,RAG应用开发。

何为RAG?

RAG全称"Retrieval-Augmented Generation",即检索增强生成,它是自然语言处理中的一项技术。这种模型结合了检索式(retrieval-based)和生成式(generative)两种组件,以生成更准确、更相关的回答。

结合上篇文章,LlamaIndex擅长为各种格式数据提供读取、转化为大模型需要的数据,最后通过Query 引擎交给大模型进行检索并生成回答。

所以,对Retrieval的理解是大模型对LlamaIndex提供的数据进行检索,是Augmented Generation的理解大模型因LlamaIndex提供的数据,对回答用户提的专业问题更有什针对性,就好像给llm 加了buff。

两个阶段

RAG,也称为检索增强生成,是利用个人或私域数据增强 LLM 的一种范式。它通常包含两个阶段

  1. 索引

读取各种数据,并对数据进行索引,为大模型构建知识库。

在这个阶段,LlamIndex提供了Data Connectors(数据连接器)、Data Indexes(数据索引)

  • Data Connectors

数据连接器。它负责将来自不同数据源的不同格式的数据注入,并转换为 LlamaIndex 支持的文档(Document)表现形式,其中包含了文本和元数据。

  • Documents / Nodes

Document是 LlamaIndex 中容器的概念,它可以包含任何数据源,包括,PDF文档,API响应,或来自数据库的数据。原来这就是LlamIndex专制各种数据格式不服的能力。

Node是 LlamaIndex 中数据的最小单元,代表了一个 Document的分块。它还包含了元数据,以及与其他Node的关系信息。这使得更精确的检索操作成为可能。

  • Data Indexes

LlamaIndex 提供便利的工具,帮助开发者为注入的数据建立索引,使得未来的检索简单而高效。

最常用的索引是向量存储索引 - VectorStoreIndex

看到这里,对LlamaIndex有了本质的认识, 数据格式千奇百怪不要紧,LlamaIndex提供了Document>Nodes这样的无数据,方便进行embedding索引。

  1. 查询

从知识库检索相关上下文信息,以辅助 LLM 回答问题

在这个阶段,LlamIndex提供了Query Engine,调用query方法就可以拿到LLM生成的结果。

在这个阶段,我们要理解查询的底层。首先,LlamaIndex根据用户的查询,在数据索引中(检索上下文)找到最相关的上下文,并将其一起,传递给LLM,以合成响应。这样,LLM就可以被增强,以获得其不在原始训练数据(LLm原数据)中的最新知识且回答更正确。这就是RAG应用的核心特点,在知识问答、聊天机器人等AI应用中有着广泛的应用场景。

该阶段的构建块

  • 检索器 Retrievers

它定义如何高效地从知识库(已被索引的数据),基于查询,检索相关上下文信息。

  • Node Postprocessors

Node后处理器。它对一系列文档节点(Node)实施转换,过滤,或排名。Node是在上一个阶段LlamaIndex对数据的统一处理得到的节点。

  • Response Synthesizers

它基于用户的查询,和一组检索到的文本块(形成上下文),利用 LLM 生成响应。

这个阶段的工作可以由LlamaIndex提供的各种Engine来启动工作。

Engine

  • Query Engines 查询引擎

允许用户基于知识库,以自然语言提问,并获得回答,以及相关的上下文。 这个引擎的查询工作过程就是上面查询阶段的查询构建过程。

  • Chat Engines

允许用户基于知识库进行对话

  • Agents

代理。它是一种由 LLM 驱动的自动化决策器。代理可以像查询引擎或聊天引擎一样使用。我这里理解为在查询和聊天之外的,定制任务函数。以后我们会有特定篇幅讲解Agents。

总结

本篇内容以RAG应用为例,解释清楚了LlamaIndex 构建知识库(Knowledge Base)和基于知识库的推理两个阶段的底层工作。

优秀, 下一篇继续深入LlamaIndex。

相关推荐
快降重科研小助手4 小时前
AIGC降重技术如何“理解”并“重塑”你的论文
aigc·ai写作·降重·降ai率·快降重
AiTop1004 小时前
智谱开源GLM-OCR:0.9B小模型在复杂文档处理登顶SOTA
人工智能·ai·aigc
光影少年5 小时前
前端 AIGC
前端·aigc
小程故事多_806 小时前
Elasticsearch ES 分词与关键词匹配技术方案解析
大数据·人工智能·elasticsearch·搜索引擎·aigc
Rolei_zl6 小时前
(AI生成) openClaw 的前世今生
llm·aigc
阿杰学AI6 小时前
AI核心知识82——大语言模型之AI Value Alignment(简洁且通俗易懂版)
人工智能·ai·语言模型·自然语言处理·aigc·机械学习·ai价值观对齐
快降重027 小时前
AIGC降重全指南:从工具选择到完美定稿
人工智能·aigc·论文降重·ai降重·快降重
猫头虎7 小时前
2026全网最热Claude Skills工具箱,GitHub上最受欢迎的7大Skills开源AI技能库
langchain·开源·prompt·github·aigc·ai编程·agi
得一录7 小时前
智能家居多智能体系统LangGraph实现
aigc
阿杰学AI8 小时前
AI核心知识81——大语言模型之MaaS(简洁且通俗易懂版)
人工智能·ai·语言模型·自然语言处理·aigc·maas·模型即服务