【flink番外篇】1、flink的23种常用算子介绍及详细示例(2)- keyby、reduce和Aggregations

一、Flink 专栏

Flink 专栏系统介绍某一知识点,并辅以具体的示例进行说明。

  • 1、Flink 部署系列

    本部分介绍Flink的部署、配置相关基础内容。

  • 2、Flink基础系列

    本部分介绍Flink 的基础部分,比如术语、架构、编程模型、编程指南、基本的datastream api用法、四大基石等内容。

  • 3、Flik Table API和SQL基础系列

    本部分介绍Flink Table Api和SQL的基本用法,比如Table API和SQL创建库、表用法、查询、窗口函数、catalog等等内容。

  • 4、Flik Table API和SQL提高与应用系列

    本部分是table api 和sql的应用部分,和实际的生产应用联系更为密切,以及有一定开发难度的内容。

  • 5、Flink 监控系列

    本部分和实际的运维、监控工作相关。

二、Flink 示例专栏

Flink 示例专栏是 Flink 专栏的辅助说明,一般不会介绍知识点的信息,更多的是提供一个一个可以具体使用的示例。本专栏不再分目录,通过链接即可看出介绍的内容。

两专栏的所有文章入口点击:Flink 系列文章汇总索引


文章目录


本文主要介绍Flink 的3种常用的operator(keyby、reduce和Aggregations)及以具体可运行示例进行说明.

如果需要了解更多内容,可以在本人Flink 专栏中了解更新系统的内容。

本文除了maven依赖外,没有其他依赖。

本专题分为五篇,即:
【flink番外篇】1、flink的23种常用算子介绍及详细示例(1)- map、flatmap和filter
【flink番外篇】1、flink的23种常用算子介绍及详细示例(2)- keyby、reduce和Aggregations
【flink番外篇】1、flink的23种常用算子介绍及详细示例(3)-window、distinct、join等
【flink番外篇】1、flink的23种常用算子介绍及详细示例(4)- union、window join、connect、outputtag、cache、iterator、project
【flink番外篇】1、flink的23种常用算子介绍及详细示例(完整版)

一、Flink的23种算子说明及示例

本文示例中使用的maven依赖和java bean 参考本专题的第一篇中的maven和java bean。

6、KeyBy

DataStream → KeyedStream

按照指定的key来对流中的数据进行分组

KeyBy 在逻辑上是基于 key 对流进行分区。在内部,它使用 hash 函数对流进行分区。它返回 KeyedDataStream 数据流。将同一Key的数据放到同一个分区。

分区结果和KeyBy下游算子的并行度强相关。如下游算子只有一个并行度,不管怎么分,都会分到一起。

对于POJO类型,KeyBy可以通过keyBy(fieldName)指定字段进行分区。

对于Tuple类型,KeyBy可以通过keyBy(fieldPosition)指定字段进行分区。

对于一般类型,如上,KeyBy可以通过keyBy(new KeySelector {...})指定字段进行分区。

java 复制代码
import java.util.Arrays;

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.datastreamapi.User;

/**
 * @author alanchan
 *
 */
public class TestKeyByDemo {
	public static void main(String[] args) throws Exception {
		StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
//		env.setParallelism(4);// 设置数据分区数量
		keyByFunction6(env);
		env.execute();
	}

	// 构造User数据源
	public static DataStreamSource<User> source(StreamExecutionEnvironment env) {
		DataStreamSource<User> source = env.fromCollection(Arrays.asList(
				new User(1, "alan1", "1", "1@1.com", 12, 1000), 
				new User(2, "alan2", "2", "2@2.com", 19, 200),
				new User(3, "alan1", "3", "3@3.com", 28, 1500), 
				new User(5, "alan1", "5", "5@5.com", 15, 500), 
				new User(4, "alan2", "4", "4@4.com", 30, 400)));
		return source;
	}

	// 按照name进行keyby 对于POJO类型,KeyBy可以通过keyBy(fieldName)指定字段进行分区
	public static void keyByFunction1(StreamExecutionEnvironment env) throws Exception {
		DataStreamSource<User> source = source(env);

		KeyedStream<User, String> sink = source.keyBy(new KeySelector<User, String>() {
			@Override
			public String getKey(User value) throws Exception {
				return value.getName();
			}
		});

		sink.map(user -> {
			System.out.println("当前线程ID:" + Thread.currentThread().getId() + ",user:" + user.toString());
			return user;
		});

		sink.print();

	}

	// lambda 对于POJO类型,KeyBy可以通过keyBy(fieldName)指定字段进行分区
	public static void keyByFunction2(StreamExecutionEnvironment env) throws Exception {
		DataStreamSource<User> source = source(env);
		KeyedStream<User, String> sink = source.keyBy(user -> user.getName());

		// 演示keyby后的数据输出
		sink.map(user -> {
			System.out.println("当前线程ID:" + Thread.currentThread().getId() + ",user:" + user.toString());
			return user;
		});

		sink.print();

	}

	// 对于Tuple类型,KeyBy可以通过keyBy(fieldPosition)指定字段进行分区。lambda
	public static void keyByFunction3(StreamExecutionEnvironment env) throws Exception {
		DataStreamSource<User> source = source(env);
		SingleOutputStreamOperator<Tuple2<String, User>> userTemp = source.map((MapFunction<User, Tuple2<String, User>>) user -> {
			return new Tuple2<String, User>(user.getName(), user);
		}).returns(Types.TUPLE(Types.STRING, Types.POJO(User.class)));

		KeyedStream<Tuple2<String, User>, Tuple> sink = userTemp.keyBy(0);

		// 演示keyby后的数据输出
		sink.map(user -> {
			System.out.println("当前线程ID:" + Thread.currentThread().getId() + ",user:" + user.f1.toString());
			return user.f1;
		});
		sink.print();

	}

	// 对于Tuple类型,KeyBy可以通过keyBy(fieldPosition)指定字段进行分区。
	public static void keyByFunction4(StreamExecutionEnvironment env) throws Exception {
		DataStreamSource<User> source = source(env);
		SingleOutputStreamOperator<Tuple2<String, User>> userTemp = source.map(new MapFunction<User, Tuple2<String, User>>() {

			@Override
			public Tuple2<String, User> map(User value) throws Exception {
				return new Tuple2<String, User>(value.getName(), value);
			}
		});

		KeyedStream<Tuple2<String, User>, String> sink = userTemp.keyBy(new KeySelector<Tuple2<String, User>, String>() {

			@Override
			public String getKey(Tuple2<String, User> value) throws Exception {
				return value.f0;
			}
		});

		// 演示keyby后的数据输出
		sink.map(user -> {
			System.out.println("当前线程ID:" + Thread.currentThread().getId() + ",user:" + user.f1.toString());
			return user.f1;
		});

//		sink.map(new MapFunction<Tuple2<String, User>, String>() {
//
//			@Override
//			public String map(Tuple2<String, User> value) throws Exception {
//				System.out.println("当前线程ID:" + Thread.currentThread().getId() + ",user:" + value.f1.toString());
//				return null;
//			}});
		sink.print();
	}

	// 对于一般类型,如上,KeyBy可以通过keyBy(new KeySelector {...})指定字段进行分区。
	// 按照name的前4位进行keyby
	public static void keyByFunction5(StreamExecutionEnvironment env) throws Exception {
		DataStreamSource<User> source = source(env);
		KeyedStream<User, String> sink = source.keyBy(new KeySelector<User, String>() {

			@Override
			public String getKey(User value) throws Exception {
//				String temp = value.getName().substring(0, 4);
				return value.getName().substring(0, 4);
			}
		});

		sink.map(user -> {
			System.out.println("当前线程ID:" + Thread.currentThread().getId() + ",user:" + user.toString());
			return user;
		});
		sink.print();

	}

	// 对于一般类型,如上,KeyBy可以通过keyBy(new KeySelector {...})指定字段进行分区。 lambda
	// 按照name的前4位进行keyby
	public static void keyByFunction6(StreamExecutionEnvironment env) throws Exception {
		DataStreamSource<User> source = source(env);
		KeyedStream<User, String> sink = source.keyBy(user -> user.getName().substring(0, 4));
		sink.map(user -> {
			System.out.println("当前线程ID:" + Thread.currentThread().getId() + ",user:" + user.toString());
			return user;
		});
		sink.print();
	}

}

7、Reduce

KeyedStream → DataStream

对集合中的元素进行聚合。Reduce 返回单个的结果值,并且 reduce 操作每处理一个元素总是创建一个新值。常用的方法有 average, sum, min, max, count,使用 reduce 方法都可实现。基于ReduceFunction进行滚动聚合,并向下游算子输出每次滚动聚合后的结果。

注意: Reduce会输出每一次滚动聚合的结果。

java 复制代码
import java.util.Arrays;

import org.apache.flink.api.common.functions.ReduceFunction;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.datastreamapi.User;

/**
 * @author alanchan
 *
 */
public class TestReduceDemo {
	public static void main(String[] args) throws Exception {
		StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
//		env.setParallelism(4);// 设置数据分区数量
		reduceFunction2(env);
		env.execute();

	}

	// 构造User数据源
	public static DataStreamSource<User> source(StreamExecutionEnvironment env) {
		DataStreamSource<User> source = env.fromCollection(Arrays.asList(
				new User(1, "alan1", "1", "1@1.com", 12, 1000), 
				new User(2, "alan2", "2", "2@2.com", 19, 200),
				new User(3, "alan1", "3", "3@3.com", 28, 1500), 
				new User(5, "alan1", "5", "5@5.com", 15, 500), 
				new User(4, "alan2", "4", "4@4.com", 30, 400)));
		return source;
	}

	// 按照name进行balance进行sum
	public static void reduceFunction1(StreamExecutionEnvironment env) throws Exception {
		DataStreamSource<User> source = source(env);

		KeyedStream<User, String> keyedStream = source.keyBy(user -> user.getName());

		SingleOutputStreamOperator<User> sink = keyedStream.reduce(new ReduceFunction<User>() {
			@Override
			public User reduce(User value1, User value2) throws Exception {
				double balance = value1.getBalance() + value2.getBalance();
				return new User(value1.getId(), value1.getName(), "", "", 0, balance);
			}
		});

		//
		sink.print();
	}

	// 按照name进行balance进行sum lambda
	public static void reduceFunction2(StreamExecutionEnvironment env) throws Exception {
		DataStreamSource<User> source = source(env);

		KeyedStream<User, String> userKeyBy = source.keyBy(user -> user.getName());
		SingleOutputStreamOperator<User> sink = userKeyBy.reduce((user1, user2) -> {
			User user = user1;
			user.setBalance(user1.getBalance() + user2.getBalance());
			return user;
		});
		sink.print();
	}

}

8、Aggregations

KeyedStream → DataStream

DataStream API 支持各种聚合,例如 min,max,sum 等。 这些函数可以应用于 KeyedStream 以获得 Aggregations 聚合。

Aggregate 对KeyedStream按指定字段滚动聚合并输出每一次滚动聚合后的结果。默认的聚合函数有:sum、min、minBy、max、maxBy。

注意:

max(field)与maxBy(field)的区别: maxBy返回field最大的那条数据;而max则是将最大的field的值赋值给第一条数据并返回第一条数据。同理,min与minBy。

Aggregate聚合算子会滚动输出每一次聚合后的结果

max 和 maxBy 之间的区别在于 max 返回流中的最大值,但 maxBy 返回具有最大值的键, min 和 minBy 同理。

max以第一个比较对象的比较列值进行替换,maxBy是以整个比较对象进行替换。

java 复制代码
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.datastreamapi.User;

/**
 * @author alanchan
 *
 */
public class TestAggregationsDemo {
	public static void main(String[] args) throws Exception {
		StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
		aggregationsFunction2(env);
		env.execute();
	}
	
	// 构造User数据源
	public static DataStreamSource<User> source(StreamExecutionEnvironment env) {
		DataStreamSource<User> source = env.fromCollection(Arrays.asList(
				new User(1, "alan1", "1", "1@1.com", 12, 1000), 
				new User(2, "alan2", "2", "2@2.com", 19, 200),
				new User(3, "alan1", "3", "3@3.com", 28, 1500), 
				new User(5, "alan1", "5", "5@5.com", 15, 500), 
				new User(4, "alan2", "4", "4@4.com", 30, 400)));
		return source;
	}
	
	//分组统计sum、max、min、maxby、minby
	public static void aggregationsFunction(StreamExecutionEnvironment env) throws Exception {
		DataStreamSource<User> source = source(env);
		
		KeyedStream<User, String> userTemp=	source.keyBy(user->user.getName());
		DataStream sink = null;
		//1、根据name进行分区统计balance之和 alan1----2500/alan2----600
//		16> User(id=1, name=alan1, pwd=1, email=1@1.com, age=12, balance=1000.0)
//		1> User(id=2, name=alan2, pwd=2, email=2@2.com, age=19, balance=200.0)
//		16> User(id=1, name=alan1, pwd=1, email=1@1.com, age=12, balance=2500.0)
//		1> User(id=2, name=alan2, pwd=2, email=2@2.com, age=19, balance=600.0)
//		16> User(id=1, name=alan1, pwd=1, email=1@1.com, age=12, balance=3000.0)
		 sink = userTemp.sum("balance");
		
		//2、根据name进行分区统计balance的max alan1----1500/alan2----400
//		 1> User(id=2, name=alan2, pwd=2, email=2@2.com, age=19, balance=200.0)
//		 16> User(id=1, name=alan1, pwd=1, email=1@1.com, age=12, balance=1000.0)
//		 16> User(id=1, name=alan1, pwd=1, email=1@1.com, age=12, balance=1500.0)
//		 1> User(id=2, name=alan2, pwd=2, email=2@2.com, age=19, balance=400.0)
//		 16> User(id=1, name=alan1, pwd=1, email=1@1.com, age=12, balance=1500.0)
		sink = userTemp.max("balance");//1@1.com-3000 --  2@2.com-300
		
		//3、根据name进行分区统计balance的min  alan1----500/alan2---200
//		16> User(id=1, name=alan1, pwd=1, email=1@1.com, age=12, balance=1000.0)
//		16> User(id=1, name=alan1, pwd=1, email=1@1.com, age=12, balance=1000.0)
//		1> User(id=2, name=alan2, pwd=2, email=2@2.com, age=19, balance=200.0)
//		16> User(id=1, name=alan1, pwd=1, email=1@1.com, age=12, balance=500.0)
//		1> User(id=2, name=alan2, pwd=2, email=2@2.com, age=19, balance=200.0)
		sink = userTemp.min("balance");
		
		//4、根据name进行分区统计balance的maxBy alan2----400/alan1----1500
//		1> User(id=2, name=alan2, pwd=2, email=2@2.com, age=19, balance=200.0)
//		1> User(id=4, name=alan2, pwd=4, email=4@4.com, age=30, balance=400.0)
//		16> User(id=1, name=alan1, pwd=1, email=1@1.com, age=12, balance=1000.0)
//		16> User(id=3, name=alan1, pwd=3, email=3@3.com, age=28, balance=1500.0)
//		16> User(id=3, name=alan1, pwd=3, email=3@3.com, age=28, balance=1500.0)
		sink = userTemp.maxBy("balance");
		
		//5、根据name进行分区统计balance的minBy alan2----200/alan1----500
//		1> User(id=2, name=alan2, pwd=2, email=2@2.com, age=19, balance=200.0)
//		1> User(id=2, name=alan2, pwd=2, email=2@2.com, age=19, balance=200.0)
//		16> User(id=1, name=alan1, pwd=1, email=1@1.com, age=12, balance=1000.0)
//		16> User(id=1, name=alan1, pwd=1, email=1@1.com, age=12, balance=1000.0)
//		16> User(id=5, name=alan1, pwd=5, email=5@5.com, age=15, balance=500.0)
		sink = userTemp.minBy("balance");
		
		sink.print();
		
	}
	
	public static void aggregationsFunction2(StreamExecutionEnvironment env) throws Exception {
		List list = new ArrayList<Tuple3<Integer, Integer, Integer>>();
			list.add(new Tuple3<>(0,3,6));
			list.add(new Tuple3<>(0,2,5));
			list.add(new Tuple3<>(0,1,6));
			list.add(new Tuple3<>(0,4,3));
			list.add(new Tuple3<>(1,1,9));
			list.add(new Tuple3<>(1,2,8));
			list.add(new Tuple3<>(1,3,10));
			list.add(new Tuple3<>(1,2,9));
			list.add(new Tuple3<>(1,5,7));
        DataStreamSource<Tuple3<Integer, Integer, Integer>> source = env.fromCollection(list);
        KeyedStream<Tuple3<Integer, Integer, Integer>, Integer> tTemp=  source.keyBy(t->t.f0);
        DataStream<Tuple3<Integer, Integer, Integer>> sink =null;
        
      //按照分区,以第一个Tuple3的元素为基础进行第三列值比较,如果第三列值小于第一个tuple3的第三列值,则进行第三列值替换,其他的不变
//        12> (0,3,6)
//        11> (1,1,9)
//        11> (1,1,8)
//        12> (0,3,5)
//        11> (1,1,8)
//        12> (0,3,5)
//        11> (1,1,8)
//        12> (0,3,3)
//        11> (1,1,7)  
      sink =  tTemp.min(2);
      
//     按照数据分区,以第一个tuple3的元素为基础进行第三列值比较,如果第三列值小于第一个tuple3的第三列值,则进行整个tuple3的替换
//     12> (0,3,6)
//     11> (1,1,9)
//     12> (0,2,5)
//     11> (1,2,8)
//     12> (0,2,5)
//     11> (1,2,8)
//     12> (0,4,3)
//     11> (1,2,8)
//     11> (1,5,7)
      sink = tTemp.minBy(2);
         
      sink.print();
        
        }

}

以上,本文主要介绍Flink 的3种常用的operator(keyby、reduce和Aggregations)及以具体可运行示例进行说明.

如果需要了解更多内容,可以在本人Flink 专栏中了解更新系统的内容。

本文除了maven依赖外,没有其他依赖。

本专题分为五篇,即:
【flink番外篇】1、flink的23种常用算子介绍及详细示例(1)- map、flatmap和filter
【flink番外篇】1、flink的23种常用算子介绍及详细示例(2)- keyby、reduce和Aggregations
【flink番外篇】1、flink的23种常用算子介绍及详细示例(3)-window、distinct、join等
【flink番外篇】1、flink的23种常用算子介绍及详细示例(4)- union、window join、connect、outputtag、cache、iterator、project
【flink番外篇】1、flink的23种常用算子介绍及详细示例(完整版)

相关推荐
PersistJiao1 小时前
在 Spark RDD 中,sortBy 和 top 算子的各自适用场景
大数据·spark·top·sortby
2301_811274311 小时前
大数据基于Spring Boot的化妆品推荐系统的设计与实现
大数据·spring boot·后端
Yz98761 小时前
hive的存储格式
大数据·数据库·数据仓库·hive·hadoop·数据库开发
青云交1 小时前
大数据新视界 -- 大数据大厂之 Hive 数据导入:多源数据集成的策略与实战(上)(3/ 30)
大数据·数据清洗·电商数据·数据整合·hive 数据导入·多源数据·影视娱乐数据
武子康2 小时前
大数据-230 离线数仓 - ODS层的构建 Hive处理 UDF 与 SerDe 处理 与 当前总结
java·大数据·数据仓库·hive·hadoop·sql·hdfs
武子康2 小时前
大数据-231 离线数仓 - DWS 层、ADS 层的创建 Hive 执行脚本
java·大数据·数据仓库·hive·hadoop·mysql
时差9532 小时前
Flink Standalone集群模式安装部署
大数据·分布式·flink·部署
锵锵锵锵~蒋2 小时前
实时数据开发 | 怎么通俗理解Flink容错机制,提到的checkpoint、barrier、Savepoint、sink都是什么
大数据·数据仓库·flink·实时数据开发
二进制_博客2 小时前
Flink学习连载文章4-flink中的各种转换操作
大数据·学习·flink
大数据编程之光2 小时前
Flink入门介绍
大数据·flink