【PyTorch】训练过程可视化

文章目录

  • [1. 训练过程中的可视化](#1. 训练过程中的可视化)
    • [1.1. alive_progress](#1.1. alive_progress)
    • [1.2. rich.progress](#1.2. rich.progress)
  • [2. 训练结束后的可视化](#2. 训练结束后的可视化)
    • [2.1. tensorboardX](#2.1. tensorboardX)
      • [2.1.1. 安装](#2.1.1. 安装)
      • [2.1.2. 使用](#2.1.2. 使用)

1. 训练过程中的可视化

主要是监控训练的进度。

1.1. alive_progress

  • 安装
bash 复制代码
pip install alive_progress
  • 使用
python 复制代码
from alive_progress import alive_bar
with alive_bar(num_epochs, theme='classic') as bar:
        for epoch in range(num_epochs):
        	...
        	bar()
  • 效果

1.2. rich.progress

  • 安装
bash 复制代码
pip install rich
  • 使用
python 复制代码
from rich.progress import track
for epoch in track(range(num_epochs)):
	...
  • 效果:右边的时间在运行时显示剩余时间,运行结束显示消耗的总时间。

2. 训练结束后的可视化

主要原理是在运行过程中记录变量值、运行时间等信息到文件中,然后根据该文件绘制图表。

2.1. tensorboardX

2.1.1. 安装

bash 复制代码
pip install tensorboardX

VSCode集成了TensorBoard支持,不过事先要安装torch-tb-profiler,安装命令:

bash 复制代码
pip install torch-tb-profiler

安装完成后,在Python源文件中tensorboardX模块导入处,点击"启动TensorBoard会话"按钮,然后选择运行事件所在目录,默认选择当前目录即可,tensorboard会自动在当前目录查找运行事件,由此即可启动TensorBoard。开启TensorBoard页面后不要关闭,数据更新后,直接点击刷新按钮即可导入新数据。


此外,也可以通过以下命令在浏览器查看tensorboard可视化结果:

bash 复制代码
# logdir为运行事件所在目录
> tensorboard logdir=runs
TensorFlow installation not found - running with reduced feature set.
I1202 20:37:50.824767 15412 plugin.py:429] Monitor runs begin
Serving TensorBoard on localhost; to expose to the network, use a proxy or pass --bind_all
TensorBoard 2.14.0 at http://localhost:6006/ (Press CTRL+C to quit)
# 手动打开命令输出提供的本地服务器地址,如http://localhost:6006/

2.1.2. 使用

  • 直接创建对象
python 复制代码
from tensorboardX import SummaryWriter
writer = SummaryWriter()
# writer.add_scalar():添加监控变量
writer.close()
  • 使用上下文管理器
python 复制代码
from tensorboardX import SummaryWriter
with SummaryWriter() as writer:
	# writer.add_scalar():添加监控变量
相关推荐
梨子串桃子_3 小时前
推荐系统学习笔记 | PyTorch学习笔记
pytorch·笔记·python·学习·算法
xwill*10 小时前
python 格式化输出详解(占位符:%、format、f表达式
开发语言·pytorch·python·深度学习
知乎的哥廷根数学学派16 小时前
基于卷积特征提取和液态神经网络的航空发动机剩余使用寿命预测算法(python)
人工智能·pytorch·python·深度学习·神经网络·算法
小码hh2 天前
【PonitNet++】1. 从数据到方法:点云技术核心知识全景梳理
人工智能·pytorch·python
岑梓铭2 天前
(YOLO前置知识点)神经网络、Pytorch、卷积神经网络CNN
人工智能·pytorch·笔记·深度学习·神经网络·yolo·计算机视觉
zlya2 天前
RTX pro 6000 black well最新架构下安装 PyTorch CUDA - 解决 sm_120 兼容性问题
人工智能·pytorch·python
知乎的哥廷根数学学派2 天前
基于数据驱动的自适应正交小波基优化算法(Python)
开发语言·网络·人工智能·pytorch·python·深度学习·算法
知乎的哥廷根数学学派2 天前
基于多物理约束融合与故障特征频率建模的滚动轴承智能退化趋势分析(Pytorch)
人工智能·pytorch·python·深度学习·算法·机器学习
抠头专注python环境配置3 天前
2026终极诊断指南:解决Windows PyTorch GPU安装失败,从迷茫到确定
人工智能·pytorch·windows·深度学习·gpu·环境配置·cuda
阿正的梦工坊3 天前
pip install transformer_engine[pytorch]编译错误解决方法
pytorch·transformer·pip