PyTorch实现逻辑回归

最终效果

先看下最终效果:

这里用一条直线把二维平面上不同的点分开。

生成随机数据

python 复制代码
#创建训练数据
x = torch.rand(10,1)*10 #shape(10,1)
y = 2*x + (5 + torch.randn(10,1))


#构建线性回归参数
w = torch.randn((1))#随机初始化w,要用到自动梯度求导
b = torch.zeros((1))#使用0初始化b,要用到自动梯度求导

n_data = torch.ones(100, 2)
xy0 = torch.normal(2 * n_data, 1.5)  # 生成均值为2.标准差为1.5的随机数组成的矩阵
c0 = torch.zeros(100)
xy1 = torch.normal(-2 * n_data, 1.5)  # 生成均值为-2.标准差为1.5的随机数组成的矩阵
c1 = torch.ones(100)

x,y = torch.cat((xy0,xy1),0).type(torch.FloatTensor).split(1, dim=1)
x = x.squeeze()
y = y.squeeze()
c = torch.cat((c0,c1),0).type(torch.FloatTensor)

数据可视化

python 复制代码
def plot(x, y, c):
    ax = plt.gca()
    sc = ax.scatter(x, y, color='black')
    paths = []
    for i in range(len(x)):
        if c[i].item() == 0:
            marker_obj = mmarkers.MarkerStyle('o')
        else:
            marker_obj = mmarkers.MarkerStyle('x')
        path = marker_obj.get_path().transformed(marker_obj.get_transform())
        paths.append(path)
    sc.set_paths(paths)
    return sc
plot(x, y, c)
plt.show()

使用x和o来表示两种不同类别的数据。

定义模型和损失函数

python 复制代码
#构建逻辑回归参数
w = torch.tensor([1.,],requires_grad=True)  # 随机初始化w
b = torch.zeros((1),requires_grad=True)  # 使用0初始化b

wx = torch.mul(w,x) # w*x
y_pred = torch.add(wx,b) # y = w*x + b
loss = (0.5*(y-y_pred)**2).mean()

这里使用了平方损失函数来估算模型准确度。

训练模型

最多训练100次,每次都会更新模型参数,当损失值小于0.03时停止训练。

python 复制代码
xx = torch.arange(-4, 5)
lr = 0.02 #学习率
for iteration in range(100):
    #前向传播
    loss = ((torch.sigmoid(x*w+b-y) - c)**2).mean()
    #反向传播
    loss.backward()
    #更新参数
    b.data.sub_(lr*b.grad) # b = b - lr*b.grad
    w.data.sub_(lr*w.grad) # w = w - lr*w.grad
    #绘图
    if iteration % 3 == 0:
        plot(x, y, c)
        yy = w*xx + b
        plt.plot(xx.data.numpy(),yy.data.numpy(),'r-',lw=5)
        plt.text(-4,2,'Loss=%.4f'%loss.data.numpy(),fontdict={'size':20,'color':'black'})
        plt.xlim(-4,4)
        plt.ylim(-4,4)
        plt.title("Iteration:{}\nw:{},b:{}".format(iteration,w.data.numpy(),b.data.numpy()))
        plt.show()

        if loss.data.numpy() < 0.03:  # 停止条件
            break

全部代码

python 复制代码
import torch
import matplotlib.pyplot as plt
import matplotlib.markers as mmarkers

#创建训练数据
x = torch.rand(10,1)*10 #shape(10,1)
y = 2*x + (5 + torch.randn(10,1))


#构建线性回归参数
w = torch.randn((1))#随机初始化w,要用到自动梯度求导
b = torch.zeros((1))#使用0初始化b,要用到自动梯度求导

wx = torch.mul(w,x) # w*x
y_pred = torch.add(wx,b) # y = w*x + b


n_data = torch.ones(100, 2)
xy0 = torch.normal(2 * n_data, 1.5)  # 生成均值为2.标准差为1.5的随机数组成的矩阵
c0 = torch.zeros(100)
xy1 = torch.normal(-2 * n_data, 1.5)  # 生成均值为-2.标准差为1.5的随机数组成的矩阵
c1 = torch.ones(100)

x,y = torch.cat((xy0,xy1),0).type(torch.FloatTensor).split(1, dim=1)
x = x.squeeze()
y = y.squeeze()
c = torch.cat((c0,c1),0).type(torch.FloatTensor)


def plot(x, y, c):
    ax = plt.gca()
    sc = ax.scatter(x, y, color='black')
    paths = []
    for i in range(len(x)):
        if c[i].item() == 0:
            marker_obj = mmarkers.MarkerStyle('o')
        else:
            marker_obj = mmarkers.MarkerStyle('x')
        path = marker_obj.get_path().transformed(marker_obj.get_transform())
        paths.append(path)
    sc.set_paths(paths)
    return sc
plot(x, y, c)
plt.show()


#构建逻辑回归参数
w = torch.tensor([1.,],requires_grad=True)#随机初始化w
b = torch.zeros((1),requires_grad=True)#使用0初始化b

wx = torch.mul(w,x) # w*x
y_pred = torch.add(wx,b) # y = w*x + b
loss = (0.5*(y-y_pred)**2).mean()

xx = torch.arange(-4, 5)
lr = 0.02 #学习率
for iteration in range(100):
    #前向传播
    loss = ((torch.sigmoid(x*w+b-y) - c)**2).mean()
    #反向传播
    loss.backward()
    #更新参数
    b.data.sub_(lr*b.grad) # b = b - lr*b.grad
    w.data.sub_(lr*w.grad) # w = w - lr*w.grad
    #绘图
    if iteration % 3 == 0:
        plot(x, y, c)
        yy = w*xx + b
        plt.plot(xx.data.numpy(),yy.data.numpy(),'r-',lw=5)
        plt.text(-4,2,'Loss=%.4f'%loss.data.numpy(),fontdict={'size':20,'color':'black'})
        plt.xlim(-4,4)
        plt.ylim(-4,4)
        plt.title("Iteration:{}\nw:{},b:{}".format(iteration,w.data.numpy(),b.data.numpy()))
        plt.show()

        if loss.data.numpy() < 0.03:#停止条件
            break
相关推荐
多巴胺与内啡肽.几秒前
OpenCV进阶操作:光流估计
人工智能·opencv·计算机视觉
妄想成为master16 分钟前
计算机视觉----时域频域在图像中的意义、傅里叶变换在图像中的应用、卷积核的频域解释
人工智能·计算机视觉·傅里叶
NLP小讲堂32 分钟前
LLaMA Factory 深度调参
人工智能·机器学习
不懂嵌入式39 分钟前
基于深度学习的水果识别系统设计
人工智能·深度学习
江小皮不皮1 小时前
为何选择MCP?自建流程与Anthropic MCP的对比分析
人工智能·llm·nlp·aigc·sse·mcp·fastmcp
GIS数据转换器1 小时前
当三维地理信息遇上气象预警:电网安全如何实现“先知先觉”?
人工智能·科技·安全·gis·智慧城市·交互
网易易盾1 小时前
AIGC时代的内容安全:AI检测技术如何应对新型风险挑战?
人工智能·安全·aigc
工头阿乐1 小时前
PyTorch中的nn.Embedding应用详解
人工智能·pytorch·embedding
alpszero1 小时前
YOLO11解决方案之物体模糊探索
人工智能·python·opencv·计算机视觉·yolo11
vlln1 小时前
适应性神经树:当深度学习遇上决策树的“生长法则”
人工智能·深度学习·算法·决策树·机器学习