最终效果
先看下最终效果:
这里用一条直线把二维平面上不同的点分开。
生成随机数据
python
#创建训练数据
x = torch.rand(10,1)*10 #shape(10,1)
y = 2*x + (5 + torch.randn(10,1))
#构建线性回归参数
w = torch.randn((1))#随机初始化w,要用到自动梯度求导
b = torch.zeros((1))#使用0初始化b,要用到自动梯度求导
n_data = torch.ones(100, 2)
xy0 = torch.normal(2 * n_data, 1.5) # 生成均值为2.标准差为1.5的随机数组成的矩阵
c0 = torch.zeros(100)
xy1 = torch.normal(-2 * n_data, 1.5) # 生成均值为-2.标准差为1.5的随机数组成的矩阵
c1 = torch.ones(100)
x,y = torch.cat((xy0,xy1),0).type(torch.FloatTensor).split(1, dim=1)
x = x.squeeze()
y = y.squeeze()
c = torch.cat((c0,c1),0).type(torch.FloatTensor)
数据可视化
python
def plot(x, y, c):
ax = plt.gca()
sc = ax.scatter(x, y, color='black')
paths = []
for i in range(len(x)):
if c[i].item() == 0:
marker_obj = mmarkers.MarkerStyle('o')
else:
marker_obj = mmarkers.MarkerStyle('x')
path = marker_obj.get_path().transformed(marker_obj.get_transform())
paths.append(path)
sc.set_paths(paths)
return sc
plot(x, y, c)
plt.show()
使用x和o来表示两种不同类别的数据。
定义模型和损失函数
python
#构建逻辑回归参数
w = torch.tensor([1.,],requires_grad=True) # 随机初始化w
b = torch.zeros((1),requires_grad=True) # 使用0初始化b
wx = torch.mul(w,x) # w*x
y_pred = torch.add(wx,b) # y = w*x + b
loss = (0.5*(y-y_pred)**2).mean()
这里使用了平方损失函数来估算模型准确度。
训练模型
最多训练100次,每次都会更新模型参数,当损失值小于0.03时停止训练。
python
xx = torch.arange(-4, 5)
lr = 0.02 #学习率
for iteration in range(100):
#前向传播
loss = ((torch.sigmoid(x*w+b-y) - c)**2).mean()
#反向传播
loss.backward()
#更新参数
b.data.sub_(lr*b.grad) # b = b - lr*b.grad
w.data.sub_(lr*w.grad) # w = w - lr*w.grad
#绘图
if iteration % 3 == 0:
plot(x, y, c)
yy = w*xx + b
plt.plot(xx.data.numpy(),yy.data.numpy(),'r-',lw=5)
plt.text(-4,2,'Loss=%.4f'%loss.data.numpy(),fontdict={'size':20,'color':'black'})
plt.xlim(-4,4)
plt.ylim(-4,4)
plt.title("Iteration:{}\nw:{},b:{}".format(iteration,w.data.numpy(),b.data.numpy()))
plt.show()
if loss.data.numpy() < 0.03: # 停止条件
break
全部代码
python
import torch
import matplotlib.pyplot as plt
import matplotlib.markers as mmarkers
#创建训练数据
x = torch.rand(10,1)*10 #shape(10,1)
y = 2*x + (5 + torch.randn(10,1))
#构建线性回归参数
w = torch.randn((1))#随机初始化w,要用到自动梯度求导
b = torch.zeros((1))#使用0初始化b,要用到自动梯度求导
wx = torch.mul(w,x) # w*x
y_pred = torch.add(wx,b) # y = w*x + b
n_data = torch.ones(100, 2)
xy0 = torch.normal(2 * n_data, 1.5) # 生成均值为2.标准差为1.5的随机数组成的矩阵
c0 = torch.zeros(100)
xy1 = torch.normal(-2 * n_data, 1.5) # 生成均值为-2.标准差为1.5的随机数组成的矩阵
c1 = torch.ones(100)
x,y = torch.cat((xy0,xy1),0).type(torch.FloatTensor).split(1, dim=1)
x = x.squeeze()
y = y.squeeze()
c = torch.cat((c0,c1),0).type(torch.FloatTensor)
def plot(x, y, c):
ax = plt.gca()
sc = ax.scatter(x, y, color='black')
paths = []
for i in range(len(x)):
if c[i].item() == 0:
marker_obj = mmarkers.MarkerStyle('o')
else:
marker_obj = mmarkers.MarkerStyle('x')
path = marker_obj.get_path().transformed(marker_obj.get_transform())
paths.append(path)
sc.set_paths(paths)
return sc
plot(x, y, c)
plt.show()
#构建逻辑回归参数
w = torch.tensor([1.,],requires_grad=True)#随机初始化w
b = torch.zeros((1),requires_grad=True)#使用0初始化b
wx = torch.mul(w,x) # w*x
y_pred = torch.add(wx,b) # y = w*x + b
loss = (0.5*(y-y_pred)**2).mean()
xx = torch.arange(-4, 5)
lr = 0.02 #学习率
for iteration in range(100):
#前向传播
loss = ((torch.sigmoid(x*w+b-y) - c)**2).mean()
#反向传播
loss.backward()
#更新参数
b.data.sub_(lr*b.grad) # b = b - lr*b.grad
w.data.sub_(lr*w.grad) # w = w - lr*w.grad
#绘图
if iteration % 3 == 0:
plot(x, y, c)
yy = w*xx + b
plt.plot(xx.data.numpy(),yy.data.numpy(),'r-',lw=5)
plt.text(-4,2,'Loss=%.4f'%loss.data.numpy(),fontdict={'size':20,'color':'black'})
plt.xlim(-4,4)
plt.ylim(-4,4)
plt.title("Iteration:{}\nw:{},b:{}".format(iteration,w.data.numpy(),b.data.numpy()))
plt.show()
if loss.data.numpy() < 0.03:#停止条件
break