Backtrader 文档学习-Quickstart

Backtrader 文档学习-Quickstart

0. 前言

backtrader,功能十分完善,有完整的使用文档,安装相对简单(直接pip安装即可)。

优点是运行速度快,支持pandas的矢量运算;支持参数自动寻优运算,内置了talib股票分析技术指标库;支持多品种、多策略、多周期的回测和交易;支持pyflio、empyrica分析模块库、alphalens多因子分析模块库等;扩展灵活,可以集成TensorFlow、PyTorch和Keras等机器学习、神经网络分析模块。

缺点:backtrader学习起来相对复杂,编程过程中使用了大量的元编程(类class),如果Python编程基础不扎实(尤其是类的操作),学习困难。另外一点,BackTrader不更新。

如果将backtrader包分解为核心组件,主要包括以下组成部分:

  • (1)数据加载(Data Feed):将交易策略的数据加载到回测框架中。
  • (2)交易策略(Strategy):该模块是编程过程中最复杂的部分,需要设计交易决策,得出买入/卖出信号。
  • (3)回测框架设置( Cerebro):
    需要设置:(i)初始资金(ii)佣金(iii)数据馈送(iv)交易策略(v)交易头寸大小。
  • (4)运行回测:运行Cerebro回测并打印出所有已执行的交易。
  • (5)评估性能(Analyzers):以图形和风险收益等指标对交易策略的回测结果进行评价。

官网说明资料详细,有演示用例,逐步跟着一步步学习。

Backtrader 官网文档

1. 两个基本概念

(1)Lines

"Lines"是backtrader回测的数据,由一系列的点组成,通常包括以下类别的数据:Open(开盘价), High(最高价), Low(最低价), Close(收盘价), Volume(成交量), OpenInterest(无的话设置为0)。Data Feeds(数据加载)、Indicators(技术指标)和Strategies(策略)都会生成 Lines。

价格数据中的所有"Open" (开盘价)按时间组成一条 Line。所以,一组含有以上6个类别的价格数据,共有6条 Lines。如果算上"DateTime"(时间,可以看作是一组数据的主键),一共有7条 Lines。当访问一条 Line 的数据时,会默认指向下标为 0 的数据。最后一个数据通过下标 -1 来访问,在-1之后是索引0,用于访问当前时刻。因此,在回测过程中,无需知道已经处理了多少条/分钟/天/月,"0"一直指向当前值,下标 -1 来访问最后一个值。

Lines包括一个或多个line,line是一系列的数据,在图中可以形成一条线(line),有6个列数据,就是股票的主要数据集,最后一列没有用。

Open, High, Low, Close, Volume, OpenInterest

包括索引列"DateTime",日期时间类型,注意:Datetime类型,不是Date类型。

(2)Index 0 Approach

访问行中的值时,将使用索引0 访问当前值;

"最后一个"输出值是用索引**-1**访问,index-1用于访问可迭代项/数组的"最后"项。

在Backtrader中提供了1个函数来度量已处理数据bar的长度:

len:返回当前系统已经处理的数据(bars)。这个和python标准的len定义差异。

(3)版本

通过 pip index versions backtrader 检查版本。

版本:backtrader (1.9.78.123)

pip index  versions backtrader
WARNING: pip index is currently an experimental command. It may be removed/changed in a future release without prior warning.
backtrader (1.9.78.123)
Available versions: 1.9.78.123, 1.9.77.123, 1.9.76.123, 1.9.75.123, 1.9.74.123

2. 基本使用

(1)初始设置现金
cerebro.broker.setcash(100000.0)
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import backtrader as bt

if __name__ == '__main__':
    cerebro = bt.Cerebro()
    cerebro.broker.setcash(100000.0)

    print('Starting Portfolio Value: %.2f' % cerebro.broker.getvalue())

    cerebro.run()

    print('Final Portfolio Value: %.2f' % cerebro.broker.getvalue())

因为没有任何策略,所以金额没有变化:

Starting Portfolio Value: 100000.00
Final Portfolio Value: 100000.00
(2)加载数据

示例使用的是Oracle的记录,实际使用,调整到国内数据。

from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import datetime  # For datetime objects
import os.path  # To manage paths
import sys  # To find out the script name (in argv[0])

# Import the backtrader platform
import backtrader as bt

if __name__ == '__main__':
    # Create a cerebro entity
    cerebro = bt.Cerebro()

    # Datas are in a subfolder of the samples. Need to find where the script is
    # because it could have been called from anywhere
    modpath = os.path.dirname(os.path.abspath(sys.argv[0]))
    datapath = os.path.join(modpath, '../../datas/orcl-1995-2014.txt')

    # Create a Data Feed
    data = bt.feeds.YahooFinanceCSVData(
        dataname=datapath,
        # Do not pass values before this date
        fromdate=datetime.datetime(2000, 1, 1),
        # Do not pass values after this date
        todate=datetime.datetime(2000, 12, 31),
        reverse=False)

    # Add the Data Feed to Cerebro
    cerebro.adddata(data)

    # Set our desired cash start
    cerebro.broker.setcash(100000.0)

    # Print out the starting conditions
    print('Starting Portfolio Value: %.2f' % cerebro.broker.getvalue())

    # Run over everything
    cerebro.run()

    # Print out the final result
    print('Final Portfolio Value: %.2f' % cerebro.broker.getvalue())

编写一个从数据库中取数据的函数使用:
注意:数据库中交易日期是date ,backtrader的数据集要求是datetime ,必须做好转换才能载入数据。

from sqlalchemy import create_engine
def get_code (stock_code):
    engine_ts = create_engine(connect parameter) 
    
    # 执行sql操作
    sql = "select * from ts_stock t where t.stock_code=" + stock_code + ";"
        
    #stock_data = pd.read_sql(sql, con=engine_ts,index_col="date")  
    #因为BackTrader日期类型必须是datetime ,从数据库中读取的日期类型是date 。
    # 读数据,先不设置索引
    stock_data = pd.read_sql(sql, con=engine_ts) # ,index_col="date"

    # 增加一列,select 字段名是date,赋值到trade_date,同时转datetime类型
    stock_data['trade_date'] = pd.to_datetime(stock_data['date'], format='%Y%m%d %H:%M:%S')
    
    # 删除原来的date列
    stock_data.drop(columns=['date'])
    
    # 新datetime列作为索引列
    stock_data.set_index(['trade_date'], inplace=True)
    
    # 索引列改名
    stock_data.index.name='date'

    # 按backtrader 格式要求,第7列openinterest ,也可以不用
    # stock_data['openinterest'] = 0
    
    data = stock_data.sort_index(ascending=True)

    engine_ts.dispose()
    return(data)

if __name__ == '__main__':
    # Create a cerebro entity
    cerebro = bt.Cerebro()
	stock_hfq_df = get_code('000858') 
	#起止时间
    start_date = datetime.datetime(2015, 1, 1)  # 回测开始时间
    end_date = datetime.datetime(2019, 12, 31)  # 回测结束时间
    data = bt.feeds.PandasData(dataname=stock_hfq_df, fromdate=start_date, todate=end_date)  # 加载数据

    # Add the Data Feed to Cerebro
    cerebro.adddata(data)

    # Add the Data Feed to Cerebro
    cerebro.adddata(data)

    # Set our desired cash start
    cerebro.broker.setcash(100000.0)

    # Print out the starting conditions
    print('Starting Portfolio Value: %.2f' % cerebro.broker.getvalue())

    # Run over everything
    cerebro.run()

    # Print out the final result
    print('Final Portfolio Value: %.2f' % cerebro.broker.getvalue())    
(3)第一个策略 买入

在init方法中,可以使用载入的数据集,第一个数据是列表 self.datas[0] ,最后一个是 self.datas[-1] 。

self.dataclose=self.datas[0]。赋值close的引用,以后只需要一个间接引用dataclose ,就可以访问收盘值。

策略next方法将在系统时钟的每个bar上调用(self.datas[0]),直到符合策略条件,比如指标值设置,才能开始产生输出。
策略:

连续下跌三天,开始买入。

策略实施在next()方法中。

## 3.第一个策略
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import datetime  # For datetime objects
import os.path  # To manage paths
import sys  # To find out the script name (in argv[0])

# Import the backtrader platform
import backtrader as bt

# Create a Stratey
class TestStrategy(bt.Strategy):

    def log(self, txt, dt=None):
        ''' Logging function for this strategy'''
        dt = dt or self.datas[0].datetime.date(0)
        print('%s, %s' % (dt.isoformat(), txt))

    def __init__(self):
        # Keep a reference to the "close" line in the data[0] dataseries
        self.dataclose = self.datas[0].close

    def next(self):
        # Simply log the closing price of the series from the reference
        self.log('Close, %.2f' % self.dataclose[0])


if __name__ == '__main__':
    # Create a cerebro entity
    # delete log file
    log_file = './bt_log.txt'
    delete_file(log_file)
    cerebro = bt.Cerebro()

    # Add a strategy
    cerebro.addstrategy(TestStrategy)
	# 五粮液测试
    stock_hfq_df = get_code('000858') 
    
    start_date = datetime.datetime(2015, 1, 1)  # 回测开始时间
    end_date = datetime.datetime(2019, 12, 31)  # 回测结束时间
    data = bt.feeds.PandasData(dataname=stock_hfq_df, fromdate=start_date, todate=end_date)  # 加载数据


    # Add the Data Feed to Cerebro
    cerebro.adddata(data)

    # Set our desired cash start
    cerebro.broker.setcash(100000.0)

    # Print out the starting conditions
    print('Starting Portfolio Value: %.2f' % cerebro.broker.getvalue())

    # Run over everything
    cerebro.run()

    # Print out the final result
    print('Final Portfolio Value: %.2f' % cerebro.broker.getvalue())

调整:

输出都是close数据,数据显示比较多,都放到log文件中。 日志路径:

log_file = './bt_log.txt'

修改TestStrategy 中的log方法,日志写入文件,便于查询。后不赘述。

## 3.第一个策略
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import datetime  # For datetime objects
import os.path  # To manage paths
import sys  # To find out the script name (in argv[0])

# Import the backtrader platform
import backtrader as bt
import os

# delete log file
def delete_file(filename):
    # if log file exist 
    if os.path.exists(filename):
        os.remove(filename)

# Create a Stratey
class TestStrategy(bt.Strategy):

    def log(self, txt, dt=None):
        ''' Logging function for this strategy'''
        dt = dt or self.datas[0].datetime.date(0)

        #print('%s, %s' % (dt.isoformat(), txt))
        with open(log_file, 'a') as file:
            file.write('%s, %s' % (dt.isoformat(), txt))
            file.write('\n')

    def __init__(self):
        # Keep a reference to the "close" line in the data[0] dataseries
        self.dataclose = self.datas[0].close

    def next(self):
        # Simply log the closing price of the series from the reference
        self.log('Close, %.2f' % self.dataclose[0])


if __name__ == '__main__':
    
    # delete log file
    log_file = './bt_log.txt'
    delete_file(log_file)
    
    # Create a cerebro entity
    cerebro = bt.Cerebro()

    # Add a strategy
    cerebro.addstrategy(TestStrategy)

    stock_hfq_df = get_code('000858') 
    
    start_date = datetime.datetime(2015, 1, 1)  # 回测开始时间
    end_date = datetime.datetime(2019, 12, 31)  # 回测结束时间
    data = bt.feeds.PandasData(dataname=stock_hfq_df, fromdate=start_date, todate=end_date)  # 加载数据


    # Add the Data Feed to Cerebro
    cerebro.adddata(data)

    # Set our desired cash start
    cerebro.broker.setcash(100000.0)

    # Print out the starting conditions
    print('Starting Portfolio Value: %.2f' % cerebro.broker.getvalue())

    # Run over everything
    cerebro.run()

    # Print out the final result
    print('Final Portfolio Value: %.2f' % cerebro.broker.getvalue())

执行后,没有交易过程记录,都在日志文件中显示:

Starting Portfolio Value: 100000.00
Final Portfolio Value: 100000.00

再增加策略中的逻辑:

策略:连续三天下跌,开始买入操作

# Create a Stratey
class TestStrategy(bt.Strategy):

    def log(self, txt, dt=None):
        ''' Logging function for this strategy'''
        dt = dt or self.datas[0].datetime.date(0)

        #print('%s, %s' % (dt.isoformat(), txt))
        with open(log_file, 'a') as file:
            file.write('%s, %s' % (dt.isoformat(), txt))
            file.write('\n')

    def __init__(self):
        # Keep a reference to the "close" line in the data[0] dataseries
        self.dataclose = self.datas[0].close
        #Open, High, Low, Close, Volume, OpenInterest
        self.dataclose = self.datas[0].close
        self.dataopen = self.datas[0].open
        self.datahigh = self.datas[0].high
        self.datalow = self.datas[0].low
        self.datavol = self.datas[0].volume
                

    def next(self):
        # Simply log the closing price of the series from the reference
        self.log('Close, %.2f' % self.dataclose[0])
		
        if self.dataclose[0] < self.dataclose[-1]:
            # current close less than previous close

            if self.dataclose[-1] < self.dataclose[-2]:
                # previous close less than the previous close

                # BUY, BUY, BUY!!! (with all possible default parameters)
                self.log('BUY CREATE, %.2f' % self.dataclose[0])
                self.buy()

说明:

  • self.datas[0] 就是购买的股票。

  • 默认购买单位是1,每次买1股 。position
    sizer属性来记录,缺省值为1,就是每一次操作只买卖1股。当前order订单执行的时候,采用的价格是触发购买条件第二天的开盘价。

    2018-01-02, Close, 80.58
    2018-01-03, Close, 80.90
    2018-01-04, Close, 82.99
    2018-01-05, Close, 82.68
    2018-01-08, Close, 82.20
    2018-01-08, BUY CREATE, 82.20
    2018-01-09, Close, 86.10
    2018-01-10, Close, 88.90

5号第一天下跌,8日第二天连续下跌,触发购买信号,购买价格就是8号的收盘价,就是9日的开盘价。

  • 当前order执行的时候,没有收佣金。佣金如何设置后续还会说明。

可以看Strategy类有什么方法、属性:

method = ""
for i in dir(bt.Strategy):
    if i[:1] != '_' :
        method += i + ','
print(method)   

方法和属性:

IndType,ObsType,PriceClose,PriceDateTime,PriceHigh,PriceLow,PriceOpen,PriceOpenInteres,PriceVolume,StratType,add_timer,addindicator,addminperiod,advance,alias,aliased,array,backwards,bind2line,bind2lines,bindlines,buy,buy_bracket,cancel,clear,close,csv,extend,forward,frompackages,getdatabyname,getdatanames,getindicators,getindicators_lines,getobservers,getposition,getpositionbyname,getpositions,getpositionsbyname,getsizer,getsizing,getwriterheaders,getwriterinfo,getwritervalues,home,incminperiod,linealias,lines,minbuffer,next,next_open,nextstart,nextstart_open,notify_cashvalue,notify_data,notify_fund,notify_order,notify_store,notify_timer,notify_trade,once,oncestart,order_target_percent,order_target_size,order_target_value,packages,params,plotinfo,plotlabel,plotlines,position,positionbyname,positions,positionsbyname,prenext,prenext_open,preonce,qbuffer,reset,rewind,sell,sell_bracket,set_tradehistory,setminperiod,setsizer,sizer,start,stop,updateminperiod,
(4)还要卖出
  • Strategy对象提供了对默认数据的位置属性的访问

  • 方法buy和sell 都创建(尚未执行)执行订单

  • Strategy订单状态的变化将通过notify 方法调用

  • 卖出策略是:持仓5天,在第6天卖出

    4.不但买入,还要卖出

    Create a Stratey

    class TestStrategy(bt.Strategy):

      def log(self, txt, dt=None):
          ''' Logging function for this strategy'''
          dt = dt or self.datas[0].datetime.date(0)
    
          #print('%s, %s' % (dt.isoformat(), txt))
          with open(log_file, 'a') as file:
              file.write('%s, %s' % (dt.isoformat(), txt))
              file.write('\n')
    
      def __init__(self):
          # Keep a reference to the "close" line in the data[0] dataseries
          self.dataclose = self.datas[0].close
          #Open, High, Low, Close, Volume, OpenInterest
          self.dataclose = self.datas[0].close
          self.dataopen = self.datas[0].open
          self.datahigh = self.datas[0].high
          self.datalow = self.datas[0].low
          self.datavol = self.datas[0].volume
          
          # To keep track of pending orders
          self.order = None                
    
      def notify_order(self, order):
      	# 买卖订单的状态:提交和接受,通过broker控制    
          if order.status in [order.Submitted, order.Accepted]:
              # Buy/Sell order submitted/accepted to/by broker - Nothing to do
              return
    
          # Check if an order has been completed
          # Attention: broker could reject order if not enough cash
          # broker如果资金不足将reject订单
          #订单状态是完成
          if order.status in [order.Completed]:
              #判断是买单,写日志
              if order.isbuy():
                  self.log('BUY EXECUTED, %.2f' % order.executed.price)
             #判读是卖单,写日志
              elif order.issell():
                  self.log('SELL EXECUTED, %.2f' % order.executed.price)
    
              #定义bar_executed 变量,记录处理bar的数量
              #len:返回当前系统已经处理的数据(bars)。这个和python标准的len定义差异。
              self.bar_executed = len(self)
              self.bar_buffer =  lenbuf(self)
    
          elif order.status in [order.Canceled, order.Margin, order.Rejected]:
              self.log('Order Canceled/Margin/Rejected')
    
          # Write down: no pending order
          self.order = None
    
      def next(self):
          # Simply log the closing price of the series from the reference
          self.log('Close, %.2f' % self.dataclose[0])
    
          # Check if an order is pending ... if yes, we cannot send a 2nd one
          if self.order:
              return
    
          # Check if we are in the market
          if not self.position:
    
              # Not yet ... we MIGHT BUY if ...
              #连续两天下跌,开始买入
              if self.dataclose[0] < self.dataclose[-1]:
                      # current close less than previous close
    
                      if self.dataclose[-1] < self.dataclose[-2]:
                          # previous close less than the previous close
    
                          # BUY, BUY, BUY!!! (with default parameters)
                          self.log('BUY CREATE, %.2f' % self.dataclose[0])
    
                          # Keep track of the created order to avoid a 2nd order
                          self.order = self.buy()
    
          else:
    
              # Already in the market ... we might sell
              if len(self) >= (self.bar_executed + 5):
                  # SELL, SELL, SELL!!! (with all possible default parameters)
                  self.log('SELL CREATE, %.2f' % self.dataclose[0])
    
                  # Keep track of the created order to avoid a 2nd order
                  self.order = self.sell()
    

    if name == 'main':

      # delete log file
      log_file = './bt_log.txt'
      delete_file(log_file)
      
      # Create a cerebro entity
      cerebro = bt.Cerebro()
    
      # Add a strategy
      cerebro.addstrategy(TestStrategy)
    
      stock_hfq_df = get_code('000858') 
      
      start_date = datetime.datetime(2015, 1, 1)  # 回测开始时间
      end_date = datetime.datetime(2019, 12, 31)  # 回测结束时间
      data = bt.feeds.PandasData(dataname=stock_hfq_df, fromdate=start_date, todate=end_date)  # 加载数据
    
    
      # Add the Data Feed to Cerebro
      cerebro.adddata(data)
    
      # Set our desired cash start
      cerebro.broker.setcash(100000.0)
    
      # Print out the starting conditions
      print('Starting Portfolio Value: %.2f' % cerebro.broker.getvalue())
    
      # Run over everything
      cerebro.run()
    
      # Print out the final result
      print('Final Portfolio Value: %.2f' % cerebro.broker.getvalue())
    

执行流程,每次买卖数量都是1股:

5日下跌,6日下跌,创建买单,9日执行买单,是9日的开盘价。

买单时,处理的是6个bar 。

从10日开始,到16日是持仓第5天,创建卖单,17日,开盘卖出。

执行结果:

2018-01-02, Close, 80.58
2018-01-03, Close, 80.90
2018-01-04, Close, 82.99
2018-01-05, Close, 82.68
2018-01-08, Close, 82.20
2018-01-08, BUY CREATE, 82.20
2018-01-09, BUY EXECUTED, 82.40
2018-01-09, Bar executed :6
2018-01-09, Close, 86.10
2018-01-10, Close, 88.90
2018-01-11, Close, 87.96
2018-01-12, Close, 91.37
2018-01-15, Close, 91.75
2018-01-16, Close, 90.82
2018-01-16, SELL CREATE, 90.82
2018-01-17, SELL EXECUTED, 90.30
2018-01-17, Bar executed :12
... ...
... ...
... ...

订单的状态是通过Order对象的status属性来表示的。status属性可以是以下几个值之一:

  • Order.Submitted:订单已提交,但尚未成交。
  • Order.Accepted:订单已被接受,正在等待成交。
  • Order.Completed:订单已完全成交。
  • Order.Canceled:订单已取消。
  • Order.Margin:订单由于保证金不足而被拒绝。
  • Order.Rejected:订单被拒绝,原因可能是无效的价格、数量等。
(5)考虑券商佣金

在main函数中增加

    # Set the commission - 0.1% ... divide by 100 to remove the %
    cerebro.broker.setcommission(commission=0.001)

修改后的策略:

增加 方法 def notify_trade(self, trade):

用于计算毛利和纯利 ,通过trade对象计算。

查看在backtrader 目录下的trade.py源码:

定义属性:

pnl定义毛利,pnlcomm定义毛利-佣金

Attributes:
      - ``status`` (``dict`` with '.' notation): Holds the resulting status of
        an update event and has the following sub-attributes

        - ``status`` (``int``): Trade status
        - ``dt`` (``float``): float coded datetime
        - ``barlen`` (``int``): number of bars the trade has been active
        - ``size`` (``int``): current size of the Trade
        - ``price`` (``float``): current price of the Trade
        - ``value`` (``float``): current monetary value of the Trade
        - ``pnl`` (``float``): current profit and loss of the Trade
        - ``pnlcomm`` (``float``): current profit and loss minus commission

      - ``event`` (``dict`` with '.' notation): Holds the event update
        - parameters

        - ``order`` (``object``): the order which initiated the``update``
        - ``size`` (``int``): size of the update
        - ``price`` (``float``):price of the update
        - ``commission`` (``float``): price of the update
    '''

#5. 考虑佣金
# Create a Stratey
class TestStrategy(bt.Strategy):

    def log(self, txt, dt=None):
        ''' Logging function for this strategy'''
        dt = dt or self.datas[0].datetime.date(0)

        #print('%s, %s' % (dt.isoformat(), txt))
        with open(log_file, 'a') as file:
            file.write('%s, %s' % (dt.isoformat(), txt))
            file.write('\n')

    def __init__(self):
        # Keep a reference to the "close" line in the data[0] dataseries
        self.dataclose = self.datas[0].close
        #Open, High, Low, Close, Volume, OpenInterest
        self.dataclose = self.datas[0].close
        self.dataopen = self.datas[0].open
        self.datahigh = self.datas[0].high
        self.datalow = self.datas[0].low
        self.datavol = self.datas[0].volume
        
        # To keep track of pending orders
        self.order = None                

        # To keep track of pending orders and buy price/commission
        self.order = None
        self.buyprice = None
        self.buycomm = None
        
        # 统计毛利和净利润
        self.gross = 0.0
        self.net = 0.0
        
    def notify_order(self, order):
        # 买卖订单的状态:提交和接受,通过broker控制    
        if order.status in [order.Submitted, order.Accepted]:
            # Buy/Sell order submitted/accepted to/by broker - Nothing to do
            return

        # Check if an order has been completed
        # Attention: broker could reject order if not enough cash
        # broker如果资金不足将reject订单
        #订单状态是完成
        if order.status in [order.Completed]:
            #判断是买单,写日志
            if order.isbuy():
                self.log(
                    'BUY EXECUTED, Price: %.2f, Cost: %.2f, Comm %.2f' %
                    (order.executed.price,
                     order.executed.value,
                     order.executed.comm))
                
                self.buyprice = order.executed.price
                self.buycomm = order.executed.comm
                
           #判读是卖单,写日志
            elif order.issell():
                self.log('SELL EXECUTED, Price: %.2f, Cost: %.2f, Comm %.2f' %
                         (order.executed.price,
                          order.executed.value,
                          order.executed.comm))

            #定义bar_executed 变量,记录处理bar的数量
            #len:返回当前系统已经处理的数据(bars)。这个和python标准的len定义差异。
            self.bar_executed = len(self)

            #日志显示处理的bar数量,逐渐递增。
            strlog = 'Bar executed :' + str(self.bar_executed)
            self.log(strlog)
            
        # 订单取消、保证金不足、退回
        elif order.status in [order.Canceled, order.Margin, order.Rejected]:
            self.log('Order Canceled/Margin/Rejected')

        # Write down: no pending order
        # 处理完订单,无挂起订单,重置订单为空
        self.order = None

    def notify_trade(self, trade):
        # 如果不是平仓,返回
        if not trade.isclosed:
            return
        
        # 平仓计算成本和利润
        self.log('OPERATION PROFIT, GROSS %.2f, NET %.2f' %
                 (trade.pnl, trade.pnlcomm))
        
        # 累计毛利和净利润
        self.gross += trade.pnl
        self.net =+ trade.pnlcomm
        
        self.log ('Accumulated profit,GROSS  %.2f, NET %.2f' % (self.gross,self.net))
        
    def next(self):
        # Simply log the closing price of the series from the reference
        self.log('Close, %.2f' % self.dataclose[0])

        # Check if an order is pending ... if yes, we cannot send a 2nd one
        if self.order:
            return

        # Check if we are in the market
        if not self.position:

            # Not yet ... we MIGHT BUY if ...
            #连续两天下跌,开始买入
            if self.dataclose[0] < self.dataclose[-1]:
                    # current close less than previous close

                    if self.dataclose[-1] < self.dataclose[-2]:
                        # previous close less than the previous close

                        # BUY, BUY, BUY!!! (with default parameters)
                        self.log('BUY CREATE, %.2f' % self.dataclose[0])

                        # Keep track of the created order to avoid a 2nd order
                        self.order = self.buy()

        else:

            # Already in the market ... we might sell
            # 持仓5天
            if len(self) >= (self.bar_executed + 5):
                # SELL, SELL, SELL!!! (with all possible default parameters)
                self.log('SELL CREATE, %.2f' % self.dataclose[0])

                # Keep track of the created order to avoid a 2nd order
                self.order = self.sell()

执行结果:

Starting Portfolio Value: 100000.00
Final Portfolio Value: 100040.35

日志内容:

2018-01-02, Close, 80.58
2018-01-03, Close, 80.90
2018-01-04, Close, 82.99
2018-01-05, Close, 82.68
2018-01-08, Close, 82.20
2018-01-08, BUY CREATE, 82.20
2018-01-09, BUY EXECUTED, Price: 82.40, Cost: 82.40, Comm 0.01
2018-01-09, Bar executed :6
2018-01-09, Close, 86.10
2018-01-10, Close, 88.90
2018-01-11, Close, 87.96
2018-01-12, Close, 91.37
2018-01-15, Close, 91.75
2018-01-16, Close, 90.82
2018-01-16, SELL CREATE, 90.82
2018-01-17, SELL EXECUTED, Price: 90.30, Cost: 82.40, Comm 0.01
2018-01-17, Bar executed :12
2018-01-17, OPERATION PROFIT, GROSS 7.90, NET 7.88
2018-01-17, Accumulated profit,GROSS  7.90, NET 7.88
2018-01-17, Close, 86.01
... ... 
... ... 
2019-12-12, BUY CREATE, 127.78
2019-12-13, BUY EXECUTED, Price: 128.58, Cost: 128.58, Comm 0.01
2019-12-13, Bar executed :475
2019-12-13, Close, 129.52
2019-12-16, Close, 128.83
2019-12-17, Close, 130.25
2019-12-18, Close, 130.94
2019-12-19, Close, 129.86
2019-12-20, Close, 129.10
2019-12-20, SELL CREATE, 129.10
2019-12-23, SELL EXECUTED, Price: 127.50, Cost: 128.58, Comm 0.01
2019-12-23, Bar executed :481
2019-12-23, OPERATION PROFIT, GROSS -1.08, NET -1.11
2019-12-23, Accumulated profit,GROSS  36.59, NET -1.11
2019-12-23, Close, 128.14
2019-12-23, BUY CREATE, 128.14
2019-12-24, BUY EXECUTED, Price: 128.44, Cost: 128.44, Comm 0.01
2019-12-24, Bar executed :482
2019-12-24, Close, 128.70
2019-12-25, Close, 128.10
2019-12-26, Close, 128.15
2019-12-27, Close, 129.00
2019-12-30, Close, 132.82
2019-12-31, Close, 133.01
2019-12-31, SELL CREATE, 133.01

可以看出

2018-01-17, SELL EXECUTED, Price: 90.30, Cost: 82.40, Comm 0.01

盈利:90.30 - 82.40 = 7.90元,佣金0.01

2018-01-17, OPERATION PROFIT, GROSS 7.90, NET 7.88

毛利:7.90元 ,买卖两次,佣金0.02

净利润:7.90 - 0.02 = 7.88 元

(6)优化策略参数

在main函数中增加,每次购买10股,默认是1股。

# Add a FixedSize sizer according to the stake
cerebro.addsizer(bt.sizers.FixedSize, stake=10)

在TestStrategy(bt.Strategy) 类定义中,增加参数。

params = (
    ('exitbars', 5),
)

用于持仓天数,默认是5天。

修改后代码:

#6. 优化参数
# Create a Stratey
class TestStrategy(bt.Strategy):
    params = (
        ('exitbars', 5),
    )

    def log(self, txt, dt=None):
        ''' Logging function for this strategy'''
        dt = dt or self.datas[0].datetime.date(0)

        #print('%s, %s' % (dt.isoformat(), txt))
        with open(log_file, 'a') as file:
            file.write('%s, %s' % (dt.isoformat(), txt))
            file.write('\n')

    def __init__(self):
        # Keep a reference to the "close" line in the data[0] dataseries
        self.dataclose = self.datas[0].close
        #Open, High, Low, Close, Volume, OpenInterest
        self.dataclose = self.datas[0].close
        self.dataopen = self.datas[0].open
        self.datahigh = self.datas[0].high
        self.datalow = self.datas[0].low
        self.datavol = self.datas[0].volume
        
        # To keep track of pending orders
        self.order = None                

        # To keep track of pending orders and buy price/commission
        self.order = None
        self.buyprice = None
        self.buycomm = None
        
        # 统计毛利和净利润
        self.gross = 0.0
        self.net = 0.0
        
    def notify_order(self, order):
        # 买卖订单的状态:提交和接受,通过broker控制    
        if order.status in [order.Submitted, order.Accepted]:
            # Buy/Sell order submitted/accepted to/by broker - Nothing to do
            return

        # Check if an order has been completed
        # Attention: broker could reject order if not enough cash
        # broker如果资金不足将reject订单
        #订单状态是完成
        if order.status in [order.Completed]:
            #判断是买单,写日志
            if order.isbuy():
                self.log(
                    'BUY EXECUTED, Price: %.2f, Cost: %.2f, Comm %.2f' %
                    (order.executed.price,
                     order.executed.value,
                     order.executed.comm))
                
                self.buyprice = order.executed.price
                self.buycomm = order.executed.comm
                
           #判读是卖单,写日志
            elif order.issell():
                self.log('SELL EXECUTED, Price: %.2f, Cost: %.2f, Comm %.2f' %
                         (order.executed.price,
                          order.executed.value,
                          order.executed.comm))

            #定义bar_executed 变量,记录处理bar的数量
            #len:返回当前系统已经处理的数据(bars)。这个和python标准的len定义差异。
            self.bar_executed = len(self)

            #日志显示处理的bar数量,逐渐递增。
            strlog = 'Bar executed :' + str(self.bar_executed)
            self.log(strlog)
            
        # 订单取消、保证金不足、退回
        elif order.status in [order.Canceled, order.Margin, order.Rejected]:
            self.log('Order Canceled/Margin/Rejected')

        # Write down: no pending order
        # 处理完订单,无挂起订单,重置订单为空
        self.order = None

    def notify_trade(self, trade):
        # 如果不是平仓,返回
        if not trade.isclosed:
            return
        
        # 平仓计算成本和利润
        self.log('OPERATION PROFIT, GROSS %.2f, NET %.2f' %
                 (trade.pnl, trade.pnlcomm))
        
        # 累计毛利和净利润
        self.gross += trade.pnl
        self.net =+ trade.pnlcomm
        
        self.log ('Accumulated profit,GROSS  %.2f, NET %.2f' % (self.gross,self.net))
        
    def next(self):
        # Simply log the closing price of the series from the reference
        self.log('Close, %.2f' % self.dataclose[0])

        # Check if an order is pending ... if yes, we cannot send a 2nd one
        if self.order:
            return

        # Check if we are in the market
        if not self.position:

            # Not yet ... we MIGHT BUY if ...
            #连续两天下跌,开始买入
            if self.dataclose[0] < self.dataclose[-1]:
                    # current close less than previous close

                    if self.dataclose[-1] < self.dataclose[-2]:
                        # previous close less than the previous close

                        # BUY, BUY, BUY!!! (with default parameters)
                        self.log('BUY CREATE, %.2f' % self.dataclose[0])

                        # Keep track of the created order to avoid a 2nd order
                        self.order = self.buy()

        else:

            # Already in the market ... we might sell
            # 持仓5天
            if len(self) >= (self.bar_executed + self.params.exitbars):
                # SELL, SELL, SELL!!! (with all possible default parameters)
                self.log('SELL CREATE, %.2f' % self.dataclose[0])

                # Keep track of the created order to avoid a 2nd order
                self.order = self.sell()
                

if __name__ == '__main__':
    
    # delete log file
    log_file = './bt_log.txt'
    delete_file(log_file)
    
    # Create a cerebro entity
    cerebro = bt.Cerebro()

    # Add a strategy
    cerebro.addstrategy(TestStrategy)

    stock_hfq_df = get_code('111969') 
    
    start_date = datetime.datetime(2015, 1, 1)  # 回测开始时间
    end_date = datetime.datetime(2019, 12, 31)  # 回测结束时间
    data = bt.feeds.PandasData(dataname=stock_hfq_df, fromdate=start_date, todate=end_date)  # 加载数据


    # Add the Data Feed to Cerebro
    cerebro.adddata(data)
    
    # Set our desired cash start
    cerebro.broker.setcash(100000.0)

    # Set the commission - 0.1% ... divide by 100 to remove the %
    # 按万一的佣金 ,买卖操作都要扣除
    cerebro.broker.setcommission(commission=0.0001)
    
    # Add a FixedSize sizer according to the stake
    cerebro.addsizer(bt.sizers.FixedSize, stake=10)

    # Print out the starting conditions
    print('Starting Portfolio Value: %.2f' % cerebro.broker.getvalue())

    # Run over everything
    cerebro.run()

    # Print out the final result
    print('Final Portfolio Value: %.2f' % cerebro.broker.getvalue())

执行输出结果:

Starting Portfolio Value: 100000.00
Final Portfolio Value: 100403.51

由于每次购买10股,盈利增加。

日志:

2018-01-02, Close, 80.58
2018-01-03, Close, 80.90
2018-01-04, Close, 82.99
2018-01-05, Close, 82.68
2018-01-08, Close, 82.20
2018-01-08, BUY CREATE, 82.20
2018-01-09, BUY EXECUTED, Price: 82.40, Cost: 824.00, Comm 0.08
2018-01-09, Bar executed :6
2018-01-09, Close, 86.10
2018-01-10, Close, 88.90
2018-01-11, Close, 87.96
2018-01-12, Close, 91.37
2018-01-15, Close, 91.75
2018-01-16, Close, 90.82
2018-01-16, SELL CREATE, 90.82
2018-01-17, SELL EXECUTED, Price: 90.30, Cost: 824.00, Comm 0.09
2018-01-17, Bar executed :12
2018-01-17, OPERATION PROFIT, GROSS 79.00, NET 78.83
2018-01-17, Accumulated profit,GROSS  79.00, NET 78.83
2018-01-17, Close, 86.01

一次买卖,平仓后,净利润和毛利都增加。

(7)增加指示器indicator

上面的例子,买入是连跌三天,卖出是持仓5天。策略简单粗暴。

通过indicator的均线,做买入卖出指标,更加合理一点。

  • 如果收盘价高于平均值,则买入
  • 如果收盘价小于平均值,则卖出
  • 只允许1个交易活动操作,买一单,卖出一单的模式

修改内容:

  • 策略增加参数,SMA周期参数,默认设置30日 。
params = (         ('maperiod', 30),('exitbars', 5),    )
  • 在next方法中,调整买卖的判断。

    #7. 使用指示器

    Create a Stratey

    class TestStrategy(bt.Strategy):
    params = (
    ('maperiod', 30),('exitbars', 5),
    )

      def log(self, txt, dt=None):
          ''' Logging function for this strategy'''
          dt = dt or self.datas[0].datetime.date(0)
    
          #print('%s, %s' % (dt.isoformat(), txt))
          with open(log_file, 'a') as file:
              file.write('%s, %s' % (dt.isoformat(), txt))
              file.write('\n')
    
      def __init__(self):
          # Keep a reference to the "close" line in the data[0] dataseries
          self.dataclose = self.datas[0].close
          #Open, High, Low, Close, Volume, OpenInterest
          self.dataclose = self.datas[0].close
          self.dataopen = self.datas[0].open
          self.datahigh = self.datas[0].high
          self.datalow = self.datas[0].low
          self.datavol = self.datas[0].volume
          
          # To keep track of pending orders
          self.order = None                
    
          # To keep track of pending orders and buy price/commission
          self.order = None
          self.buyprice = None
          self.buycomm = None
          
          # 统计毛利和净利润
          self.gross = 0.0
          self.net = 0.0
          
          # Add a MovingAverageSimple indicator
          # 使用简单移动平均线确定买入和卖出操作
          self.sma = bt.indicators.SimpleMovingAverage(
              self.datas[0], period=self.params.maperiod)
          
      def notify_order(self, order):
          # 买卖订单的状态:提交和接受,通过broker控制    
          if order.status in [order.Submitted, order.Accepted]:
              # Buy/Sell order submitted/accepted to/by broker - Nothing to do
              return
    
          # Check if an order has been completed
          # Attention: broker could reject order if not enough cash
          # broker如果资金不足将reject订单
          #订单状态是完成
          if order.status in [order.Completed]:
              #判断是买单,写日志
              if order.isbuy():
                  self.log(
                      'BUY EXECUTED, Price: %.2f, Cost: %.2f, Comm %.2f' %
                      (order.executed.price,
                       order.executed.value,
                       order.executed.comm))
                  
                  self.buyprice = order.executed.price
                  self.buycomm = order.executed.comm
                  
             #判读是卖单,写日志
              elif order.issell():
                  self.log('SELL EXECUTED, Price: %.2f, Cost: %.2f, Comm %.2f' %
                           (order.executed.price,
                            order.executed.value,
                            order.executed.comm))
    
              #定义bar_executed 变量,记录处理bar的数量
              #len:返回当前系统已经处理的数据(bars)。这个和python标准的len定义差异。
              self.bar_executed = len(self)
    
              #日志显示处理的bar数量,逐渐递增。
              strlog = 'Bar executed :' + str(self.bar_executed)
              self.log(strlog)
              
          # 订单取消、保证金不足、退回
          elif order.status in [order.Canceled, order.Margin, order.Rejected]:
              self.log('Order Canceled/Margin/Rejected')
    
          # Write down: no pending order
          # 处理完订单,无挂起订单,重置订单为空
          self.order = None
    
      def notify_trade(self, trade):
          # 如果不是平仓,返回
          if not trade.isclosed:
              return
          
          # 平仓计算成本和利润
          self.log('OPERATION PROFIT, GROSS %.2f, NET %.2f' %
                   (trade.pnl, trade.pnlcomm))
          
          # 累计毛利和净利润
          self.gross += trade.pnl
          self.net =+ trade.pnlcomm
          
          self.log ('Accumulated profit,GROSS  %.2f, NET %.2f' % (self.gross,self.net))
          
      def next(self):
          # Simply log the closing price of the series from the reference
          self.log('Close, %.2f' % self.dataclose[0])
    
          # Check if an order is pending ... if yes, we cannot send a 2nd one
          if self.order:
              return
    
          # Check if we are in the market
          if not self.position:
    
              # Not yet ... we MIGHT BUY if ...
              #收盘穿过简单平均移动线,买入
              if self.dataclose[0] > self.sma[0]:
                  # current close less than previous close
    
                  if self.dataclose[-1] < self.dataclose[-2]:
                      # previous close less than the previous close
    
                      # BUY, BUY, BUY!!! (with default parameters)
                      self.log('BUY CREATE, %.2f' % self.dataclose[0])
    
                      # Keep track of the created order to avoid a 2nd order
                      self.order = self.buy()
    
          else:
              # Already in the market ... we might sell
              #收盘穿过简单平均移动线,买入
              if self.dataclose[0] < self.sma[0]:
                  # SELL, SELL, SELL!!! (with all possible default parameters)
                  self.log('SELL CREATE, %.2f' % self.dataclose[0])
    
                  # Keep track of the created order to avoid a 2nd order
                  self.order = self.sell()
    

    if name == 'main':

      # delete log file
      log_file = './bt_log.txt'
      delete_file(log_file)
      
      # Create a cerebro entity
      cerebro = bt.Cerebro()
    
      # Add a strategy
      cerebro.addstrategy(TestStrategy)
    
      stock_hfq_df = get_code('111969') 
      
      start_date = datetime.datetime(2015, 1, 1)  # 回测开始时间
      end_date = datetime.datetime(2019, 12, 31)  # 回测结束时间
      data = bt.feeds.PandasData(dataname=stock_hfq_df, fromdate=start_date, todate=end_date)  # 加载数据
    
    
      # Add the Data Feed to Cerebro
      cerebro.adddata(data)
      
      # Set our desired cash start
      cerebro.broker.setcash(100000.0)
    
      # Set the commission - 0.1% ... divide by 100 to remove the %
      # 按万一的佣金 ,买卖操作都要扣除
      cerebro.broker.setcommission(commission=0.0001)
      
      # Add a FixedSize sizer according to the stake
      cerebro.addsizer(bt.sizers.FixedSize, stake=10)
    
      # Print out the starting conditions
      print('Starting Portfolio Value: %.2f' % cerebro.broker.getvalue())
    
      # Run over everything
      cerebro.run()
    
      # Print out the final result
      print('Final Portfolio Value: %.2f' % cerebro.broker.getvalue())
    

执行结果:

Starting Portfolio Value: 100000.00
Final Portfolio Value: 100522.68

比简单判断下跌买入,持仓5天卖出的策略,收益高119.17。

Starting Portfolio Value: 100000.00
Final Portfolio Value: 100403.51
(8)可视化

内置的plot方法,参数如下:

def plot(self, plotter=None, numfigs=1, iplot=True, start=None, end=None,
        width=16, height=9, dpi=300, tight=True, use=None, **kwargs):

说明:如果在jupyter中直接绘图,报错

cerebro.plot() 

报错:Javascript Error: IPython is not defined

解决方法:

%matplotlib inline

调用绘图:

cerebro.plot(iplot=False)

在jupyter中可以绘图。

在init方法中增加绘图指示器指标:

        # Indicators for the plotting show
        bt.indicators.ExponentialMovingAverage(self.datas[0], period=25)
        bt.indicators.WeightedMovingAverage(self.datas[0], period=25,
                                            subplot=True)
        bt.indicators.StochasticSlow(self.datas[0])
        bt.indicators.MACDHisto(self.datas[0])
        rsi = bt.indicators.RSI(self.datas[0])
        bt.indicators.SmoothedMovingAverage(rsi, period=10)
        bt.indicators.ATR(self.datas[0], plot=False)

#8. 可视化
# Create a Stratey
class TestStrategy(bt.Strategy):
    params = (
         ('maperiod', 30),('exitbars', 5),
    )

    def log(self, txt, dt=None):
        ''' Logging function for this strategy'''
        dt = dt or self.datas[0].datetime.date(0)

        #print('%s, %s' % (dt.isoformat(), txt))
        with open(log_file, 'a') as file:
            file.write('%s, %s' % (dt.isoformat(), txt))
            file.write('\n')

    def __init__(self):
        # Keep a reference to the "close" line in the data[0] dataseries
        self.dataclose = self.datas[0].close
        #Open, High, Low, Close, Volume, OpenInterest
        self.dataclose = self.datas[0].close
        self.dataopen = self.datas[0].open
        self.datahigh = self.datas[0].high
        self.datalow = self.datas[0].low
        self.datavol = self.datas[0].volume
        
        # To keep track of pending orders
        self.order = None                

        # To keep track of pending orders and buy price/commission
        self.order = None
        self.buyprice = None
        self.buycomm = None
        
        # 统计毛利和净利润
        self.gross = 0.0
        self.net = 0.0
        
        # Add a MovingAverageSimple indicator
        # 使用简单移动平均线确定买入和卖出操作
        self.sma = bt.indicators.SimpleMovingAverage(
            self.datas[0], period=self.params.maperiod)
        
        # Indicators for the plotting show
        bt.indicators.ExponentialMovingAverage(self.datas[0], period=25)
        bt.indicators.WeightedMovingAverage(self.datas[0], period=25,
                                            subplot=True)
        bt.indicators.StochasticSlow(self.datas[0])
        bt.indicators.MACDHisto(self.datas[0])
        rsi = bt.indicators.RSI(self.datas[0])
        bt.indicators.SmoothedMovingAverage(rsi, period=10)
        bt.indicators.ATR(self.datas[0], plot=False)
        
    def notify_order(self, order):
        # 买卖订单的状态:提交和接受,通过broker控制    
        if order.status in [order.Submitted, order.Accepted]:
            # Buy/Sell order submitted/accepted to/by broker - Nothing to do
            return

        # Check if an order has been completed
        # Attention: broker could reject order if not enough cash
        # broker如果资金不足将reject订单
        #订单状态是完成
        if order.status in [order.Completed]:
            #判断是买单,写日志
            if order.isbuy():
                self.log(
                    'BUY EXECUTED, Price: %.2f, Cost: %.2f, Comm %.2f' %
                    (order.executed.price,
                     order.executed.value,
                     order.executed.comm))
                
                self.buyprice = order.executed.price
                self.buycomm = order.executed.comm
                
           #判读是卖单,写日志
            elif order.issell():
                self.log('SELL EXECUTED, Price: %.2f, Cost: %.2f, Comm %.2f' %
                         (order.executed.price,
                          order.executed.value,
                          order.executed.comm))

            #定义bar_executed 变量,记录处理bar的数量
            #len:返回当前系统已经处理的数据(bars)。这个和python标准的len定义差异。
            self.bar_executed = len(self)

            #日志显示处理的bar数量,逐渐递增。
            strlog = 'Bar executed :' + str(self.bar_executed)
            self.log(strlog)
            
        # 订单取消、保证金不足、退回
        elif order.status in [order.Canceled, order.Margin, order.Rejected]:
            self.log('Order Canceled/Margin/Rejected')

        # Write down: no pending order
        # 处理完订单,无挂起订单,重置订单为空
        self.order = None

    def notify_trade(self, trade):
        # 如果不是平仓,返回
        if not trade.isclosed:
            return
        
        # 平仓计算成本和利润
        self.log('OPERATION PROFIT, GROSS %.2f, NET %.2f' %
                 (trade.pnl, trade.pnlcomm))
        
        # 累计毛利和净利润
        self.gross += trade.pnl
        self.net =+ trade.pnlcomm
        
        self.log ('Accumulated profit,GROSS  %.2f, NET %.2f' % (self.gross,self.net))
        
    def next(self):
        # Simply log the closing price of the series from the reference
        self.log('Close, %.2f' % self.dataclose[0])

        # Check if an order is pending ... if yes, we cannot send a 2nd one
        if self.order:
            return

        # Check if we are in the market
        if not self.position:

            # Not yet ... we MIGHT BUY if ...
            #收盘穿过简单平均移动线,买入
            if self.dataclose[0] > self.sma[0]:
                # current close less than previous close

                if self.dataclose[-1] < self.dataclose[-2]:
                    # previous close less than the previous close

                    # BUY, BUY, BUY!!! (with default parameters)
                    self.log('BUY CREATE, %.2f' % self.dataclose[0])

                    # Keep track of the created order to avoid a 2nd order
                    self.order = self.buy()

        else:
            # Already in the market ... we might sell
            #收盘穿过简单平均移动线,买入
            if self.dataclose[0] < self.sma[0]:
                # SELL, SELL, SELL!!! (with all possible default parameters)
                self.log('SELL CREATE, %.2f' % self.dataclose[0])

                # Keep track of the created order to avoid a 2nd order
                self.order = self.sell()

                
%matplotlib inline
if __name__ == '__main__':
    
    # delete log file
    log_file = './bt_log.txt'
    delete_file(log_file)
    
    # Create a cerebro entity
    cerebro = bt.Cerebro()

    # Add a strategy
    cerebro.addstrategy(TestStrategy)

    stock_hfq_df = get_code('111969') 
    
    start_date = datetime.datetime(2015, 1, 1)  # 回测开始时间
    end_date = datetime.datetime(2019, 12, 31)  # 回测结束时间
    data = bt.feeds.PandasData(dataname=stock_hfq_df, fromdate=start_date, todate=end_date)  # 加载数据


    # Add the Data Feed to Cerebro
    cerebro.adddata(data)
    
    # Set our desired cash start
    cerebro.broker.setcash(100000.0)

    # Set the commission - 0.1% ... divide by 100 to remove the %
    # 按万一的佣金 ,买卖操作都要扣除
    cerebro.broker.setcommission(commission=0.0001)
    
    # Add a FixedSize sizer according to the stake
    cerebro.addsizer(bt.sizers.FixedSize, stake=10)

    # Print out the starting conditions
    print('Starting Portfolio Value: %.2f' % cerebro.broker.getvalue())

    # Run over everything
    cerebro.run()

    # Print out the final result
    print('Final Portfolio Value: %.2f' % cerebro.broker.getvalue())
    
    cerebro.plot(iplot=False)
    #cerebro.plot() # Javascript Error: IPython is not defined

绘图结果如下:

相关推荐
yannan2019031314 分钟前
【算法】(Python)动态规划
python·算法·动态规划
蒙娜丽宁24 分钟前
《Python OpenCV从菜鸟到高手》——零基础进阶,开启图像处理与计算机视觉的大门!
python·opencv·计算机视觉
光芒再现dev25 分钟前
已解决,部署GPTSoVITS报错‘AsyncRequest‘ object has no attribute ‘_json_response_data‘
运维·python·gpt·语言模型·自然语言处理
好喜欢吃红柚子39 分钟前
万字长文解读空间、通道注意力机制机制和超详细代码逐行分析(SE,CBAM,SGE,CA,ECA,TA)
人工智能·pytorch·python·计算机视觉·cnn
小馒头学python44 分钟前
机器学习是什么?AIGC又是什么?机器学习与AIGC未来科技的双引擎
人工智能·python·机器学习
神奇夜光杯1 小时前
Python酷库之旅-第三方库Pandas(202)
开发语言·人工智能·python·excel·pandas·标准库及第三方库·学习与成长
千天夜1 小时前
使用UDP协议传输视频流!(分片、缓存)
python·网络协议·udp·视频流
测试界的酸菜鱼1 小时前
Python 大数据展示屏实例
大数据·开发语言·python
羊小猪~~1 小时前
神经网络基础--什么是正向传播??什么是方向传播??
人工智能·pytorch·python·深度学习·神经网络·算法·机器学习
放飞自我的Coder2 小时前
【python ROUGE BLEU jiaba.cut NLP常用的指标计算】
python·自然语言处理·bleu·rouge·jieba分词