pytorch——房价预测

1、首先对数据进行读取和预处理 2、读取数据后,对x数据进行标准化处理,以便于后续训练的稳定性,并转换为tensor格式 3、接下来设置训练参数和模型 这里采用回归模型,既y=x*weight1+bias1,设置的学习率为0.0006,损失函数采用了MSE(均方误差) 4、绘制图像 由于数据量较少,所以将整个训练集作为测试集,观察生成的图像

完整代码

python 复制代码
import torch
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import torch.optim as optim
import warnings
warnings.filterwarnings("ignore")


# In[4]:


features = pd.read_csv('房价预测.csv')

features


# In[26]:


year = []
price = []
for i in range(0,12):
    year.append([features['Year'][i]])
    price.append([features['Price'][i]])



# In[27]:


year = np.array(year)
price = np.array(price)
year,price


# In[53]:


from sklearn import preprocessing

# 特征标准化处理
year = preprocessing.StandardScaler().fit_transform(year)
year[0]


# In[54]:


x = torch.tensor(year,dtype=float)
y = torch.tensor(price,dtype=float)
x,y


# In[62]:


learning_rate = 0.0001
weights1 = torch.randn((1,1),dtype=float,requires_grad=True)
bias1 = torch.randn(1,dtype=float,requires_grad=True)


losses = []


for i in range(0, 5000):
    ans = x.mm(weights1) + bias1
    #计算损失
    criterion = torch.nn.MSELoss()  # 使用适当的损失函数
    loss = criterion(ans, y)

    losses.append(loss)

    if i%100==0:

        print(f'loss={loss},epoch={i},w={weights1}')

    #反向传播
    loss.backward()
    #更新参数
    weights1.data.add_(-learning_rate*weights1.grad.data)
    bias1.data.add_(-learning_rate*bias1.grad.data)
    #清空
    weights1.grad.data.zero_()
    bias1.grad.data.zero_()
# 使用 features['Year'] 和 features['Price'] 创建日期和价格的列表
year = features['Year']
price = features['Price']
# 将 ans 转换为 Python 列表
ans_list = ans.tolist()

# 提取列表中的每个元素(确保是单个的标量值)
predictions = [item[0] for item in ans_list]

# 创建一个表格来存日期和其对应的标签数值
true_data = pd.DataFrame(data={'date': year, 'actual': price})
predictions_data = pd.DataFrame(data={'date': year, 'prediction': predictions})
# 真实值
plt.plot(true_data['date'], true_data['actual'], 'b-', label='actual')

# 预测值
plt.plot(predictions_data['date'], predictions_data['prediction'], 'ro', label='prediction')
plt.xticks(rotation='60')
plt.legend()

# 图名
plt.xlabel('Date')
plt.ylabel('Price')  # 注意修改为你的标签
plt.title('Actual and Predicted Values')
plt.show()

本文由博客一文多发平台 OpenWrite 发布!

相关推荐
70asunflower2 小时前
torch.manual_seed()介绍
人工智能·pytorch·python
sunfove8 小时前
拥抱不确定性:使用 PyTorch 构建贝叶斯神经网络 (BNN)
人工智能·pytorch·神经网络
bst@微胖子18 小时前
LlamaIndex之核心概念及部署以及入门案例
pytorch·深度学习·机器学习
C系语言1 天前
Anaconda虚拟环境,完全使用conda install命令安装所有包,使用conda install pytorch
人工智能·pytorch·conda
不如语冰2 天前
AI大模型入门1.1-python基础-数据结构
数据结构·人工智能·pytorch·python·cnn
pen-ai2 天前
PyTorch 张量维度处理详解
人工智能·pytorch·python
pen-ai2 天前
【PyTorch】 nn.TransformerEncoderLayer 详解
人工智能·pytorch·python
山土成旧客2 天前
【Python学习打卡-Day44】站在巨人的肩膀上:玩转PyTorch预训练模型与迁移学习
pytorch·python·学习
星河天欲瞩2 天前
【深度学习Day1】环境配置(CUDA、PyTorch)
人工智能·pytorch·python·深度学习·学习·机器学习·conda
猫天意3 天前
【深度学习小课堂】| torch | 升维打击还是原位拼接?深度解码 PyTorch 中 stack 与 cat 的几何奥义
开发语言·人工智能·pytorch·深度学习·神经网络·yolo·机器学习