如何提高大模型在超长上下文的表现?Claude实验表明加一句prompt立即提升效果~

本文来自DataLearnerAI官方网站: 如何提高大模型在超长上下文的表现?Claude实验表明加一句prompt立即提升效果~ | 数据学习者官方网站(Datalearner)https://www.datalearner.com/blog/1051701947131881

Claude 2.1版本的模型上下文长度最高拓展到200K,也是目前商用领域上下文长度支持最长的模型之一。但是,在模型发布不久之后,有人测试发现Claude 2.1模型在超过20K之后效果下降明显 。但是Anthropic官方发布了一个说明解释这不是Claude模型本身在超长上下文的真实原因,主要是模型拒绝回答一些与文章主体不符的内容,实际中只需要一句prompt即可提高性能,将模型在超长上下文的水平准确率从27%提高到98%

Claude2.1的超长上下文水平简介

此前,有用户通过在超长上下文中注入一段特别的句子让模型回答用来测试大模型在超长上下文条件的表现(具体测试参考:GPT-4-Turbo的128K长度上下文性能如何?超过73K Tokens的数据支持依然不太好!)。

Claude-2.1-200K推出之后,作者做了同样的测试,发现Claude-2.1表现非常差:

可以看到,当文档长度超过20K之后,表现就非常差,与Anthropic官方的说法差别很大。

而今天,Anthropic官方发布了一个博客解释,这个不是因为Claude模型能力不行,而是测试的方式不太好。

模型不愿意回答与文本不相干的内容

为了减少错误和避免提出无依据的声明,Claude 2.1被训练成在没有足够信息支持回答时不回答问题 。这意味着如果文档没有提供足够的信息来明确回答一个问题,模型可能会选择不作回答。模型的训练数据可能包括减少不准确性的特定任务。如果模型在训练过程中接收到避免错误和不准确声明的强烈信号,它可能会在实际应用中表现出更多的谨慎。进而导致上述情况出现。

而进一步的,Anthropic发现可以通过简单的prompt提示就可以提高模型不愿意回答不相关内容的效果 ,即让模型回答问题之前,加上一句"Here is the most relevant sentence in the context:"即可大幅提升模型回答效果,改进模型不愿意回答不相关内容的水平。

关于这个实验的详细过程和结果大家参考原文:如何提高大模型在超长上下文的表现?Claude实验表明加一句prompt立即提升效果~ | 数据学习者官方网站(Datalearner)
相关推荐
猫头虎2 天前
Paper2Agent:将科研论文转化为可交互的AI智能体工具项目
人工智能·prompt·aigc·交互·pip·agi·ai-native
声网2 天前
阿里发布「夸克 AI 眼镜」:融合阿里购物、地图、支付生态;苹果拟收购计算机视觉初创 Prompt AI丨日报
人工智能·计算机视觉·prompt
Wade_Crab3 天前
第二章:动态 Prompt 管理与多科室智能问答系统
人工智能·spring·prompt
Fuly10245 天前
prompt构建技巧
人工智能·prompt
为java加瓦5 天前
前端学AI:如何写好提示词(prompt)
前端·人工智能·prompt
猫头虎6 天前
HAMi 2.7.0 发布:全面拓展异构芯片支持,优化GPU资源调度与智能管理
嵌入式硬件·算法·prompt·aigc·embedding·gpu算力·ai-native
realhuizhu7 天前
📚 技术人的阅读提效神器:多语言智能中文摘要生成指令
人工智能·ai·chatgpt·prompt·提示词·总结·deepseek·摘要
0x2118 天前
[论文阅读]PromptArmor: Simple yet Effective Prompt Injection Defenses
prompt
zzywxc7878 天前
AI 在金融、医疗、教育、制造业等领域都有广泛且深入的应用,以下是这些领域的一些落地案例
人工智能·金融·自动化·prompt·ai编程·xcode