flink使用事件时间时警惕kafka不同分区的事件时间倾斜问题

背景

flink和kafka的消息组合消费模式几乎是实时流处理的标配,然后当在flink中使用事件时间处理时,需要注意kafka不同分区元素之间时间相差太大的问题,这样有可能会导致严重的数据堆积问题

kafka不同分区元素事件时间差异较大导致的问题

总结

我们在kafka的不同分区之间的事件的时间不能太过于极端,因为这样的话,下游的水印是由消费的分区中最小的那个事件时间元素来决定的,但是flink仍然会消费其它分区的元素,只是由于水印不满足,这些元素再向下游管道流动时会被临时缓冲起来,当这种情况很极端时,有可能把flink的作业搞崩溃

相关推荐
SelectDB技术团队2 分钟前
Apache Doris 2025 Roadmap:构建 GenAI 时代实时高效统一的数据底座
大数据·数据库·数据仓库·人工智能·ai·数据分析·湖仓一体
你觉得20521 分钟前
浙江大学朱霖潮研究员:《人工智能重塑科学与工程研究》以蛋白质结构预测为例|附PPT下载方法
大数据·人工智能·机器学习·ai·云计算·aigc·powerpoint
益莱储中国36 分钟前
世界通信大会、嵌入式展及慕尼黑上海光博会亮点回顾
大数据
程序媛学姐1 小时前
SpringKafka错误处理:重试机制与死信队列
java·开发语言·spring·kafka
Loving_enjoy1 小时前
基于Hadoop的明星社交媒体影响力数据挖掘平台:设计与实现
大数据·hadoop·数据挖掘
浮尘笔记1 小时前
go-zero使用elasticsearch踩坑记:时间存储和展示问题
大数据·elasticsearch·golang·go
碳基学AI3 小时前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义免费下载方法
大数据·人工智能·python·gpt·算法·语言模型·集成学习
一个天蝎座 白勺 程序猿4 小时前
大数据(4.6)Hive执行引擎选型终极指南:MapReduce/Tez/Spark性能实测×万亿级数据资源配置公式
大数据·hive·mapreduce
HelpHelp同学4 小时前
信息混乱难查找?三步搭建高效帮助中心解决难题
大数据·人工智能·知识库管理系统
TDengine (老段)10 小时前
TDengine 中的关联查询
大数据·javascript·网络·物联网·时序数据库·tdengine·iotdb