联邦多任务蒸馏助力多接入边缘计算下的个性化服务 | TPDS 2023

联邦多任务蒸馏助力多接入边缘计算下的个性化服务 | TPDS 2023

随着移动智能设备的普及和人工智能技术的发展,越来越多的分布式数据在终端被产生与收集,并以多接入边缘计算(MEC)的形式进行处理和分析。但是由于用户的行为模式与服务需求的多样,不同设备上的数据分布与模型的任务需求往往存在显著差异,叠加MEC场景设备硬件配置高度差异化、通信受限等多重限制,给部署与协同训练机器学习模型带来了挑战。

针对这个问题,中科院计算所、中国科学院大学、中关村实验室与北京交通大学研究团队在TPDS 2023上提出了一种"联邦多任务蒸馏"方法,在兼顾边缘计算场景对于模型异构与低通信开销需求的同时提升客户端在多任务场景的性能。该方法通过在服务器和客户端之间传递知识而不是模型参数,大大减少了通信开销。同时,客户端可以自主选择不同的模型架构,并在此基础上实现模型的个性化优化。具体地,通过引导疏离的设备端和服务器端的双向蒸馏训练过程,该方法实现了在资源受限的MEC环境下,快速高效地训练出对本地任务拟合较好的定制化模型。

在图像识别与运动状态检测上的实验表明,相比现有方法,该联邦多任务蒸馏在保证收敛速度与通信效率的同时,显著提升了模型在本地任务上的表现。


论文链接:https://ieeexplore.ieee.org/document/10163770

相关推荐
正脉科工 CAE仿真14 分钟前
抗震计算 | 基于随机振动理论的结构地震响应计算
人工智能
看到我,请让我去学习16 分钟前
OpenCV编程- (图像基础处理:噪声、滤波、直方图与边缘检测)
c语言·c++·人工智能·opencv·计算机视觉
码字的字节18 分钟前
深度解析Computer-Using Agent:AI如何像人类一样操作计算机
人工智能·computer-using·ai操作计算机·cua
说私域1 小时前
互联网生态下赢家群体的崛起与“开源AI智能名片链动2+1模式S2B2C商城小程序“的赋能效应
人工智能·小程序·开源
董厂长5 小时前
langchain :记忆组件混淆概念澄清 & 创建Conversational ReAct后显示指定 记忆组件
人工智能·深度学习·langchain·llm
G皮T8 小时前
【人工智能】ChatGPT、DeepSeek-R1、DeepSeek-V3 辨析
人工智能·chatgpt·llm·大语言模型·deepseek·deepseek-v3·deepseek-r1
九年义务漏网鲨鱼8 小时前
【大模型学习 | MINIGPT-4原理】
人工智能·深度学习·学习·语言模型·多模态
元宇宙时间8 小时前
Playfun即将开启大型Web3线上活动,打造沉浸式GameFi体验生态
人工智能·去中心化·区块链
开发者工具分享9 小时前
文本音频违规识别工具排行榜(12选)
人工智能·音视频
产品经理独孤虾9 小时前
人工智能大模型如何助力电商产品经理打造高效的商品工业属性画像
人工智能·机器学习·ai·大模型·产品经理·商品画像·商品工业属性