【AI美图】第02期效果图,AI人工智能全自动绘画,美图欣赏

今天给大家献上一组最新提示词

参照图生成图像

依据参照图生成新的图像需要掌握一些技巧,以下是一些可能有用的技巧:

观察参照图:在开始生成新图像之前,仔细观察参照图是非常重要的。你需要了解图像的布局、颜色、线条、细节等方面的信息,以便在生成新图像时能够准确地模仿这些特征。

确定目标图像:在生成新图像之前,你需要明确你的目标图像是什么。你可以根据自己的喜好、需求或创作目的来确定目标图像。

使用合适的工具:选择合适的工具可以帮助你更轻松地生成新图像。你可以使用绘图软件、图像编辑软件或在线工具等来生成新图像。

分解参照图:将参照图分解成不同的部分,可以帮助你更好地理解图像的结构和特征。你可以将图像分解成不同的元素,如背景、角色、道具等,然后分别进行模仿和创作。

调整细节:在生成新图像时,需要注意细节的调整。你可以根据需要对细节进行调整,如改变颜色、添加阴影、增强立体感等,以使新图像更加生动和逼真。

尝试不同的风格:在生成新图像时,可以尝试不同的风格和技巧。你可以尝试使用不同的线条、色彩和构图方式来创作新图像,以探索更多的可能性。

总之,依据参照图生成新的图像需要仔细观察、明确目标、选择合适的工具、分解参照图、调整细节并尝试不同的风格。通过不断的练习和实践,你可以逐渐掌握这些技巧并创作出更加生动和有趣的新图像。

下面是山洞,篝火,等等关键词下生成的效果:




下面是高山,帐篷,积雪等关键词下生成的效果:




第二个系列二次元系列

格斗场面,肌肉清晰,AI自动生成如下效果。

生成二次元图像需要注意以下几点:

角色设计:角色设计是二次元图像的重要组成部分,需要注重角色的外观、性格和特点。在设计角色时,需要考虑角色的种族、性别、年龄、服装和发型等因素,以创造出生动有趣的角色形象。

背景设计:背景设计也是二次元图像的重要部分,需要注重场景的氛围和细节。在设计背景时,需要考虑场景的地点、时间、天气等因素,以创造出逼真的场景效果。

色彩搭配:色彩搭配是二次元图像的视觉表现之一,需要注重色彩的搭配和运用。在选择颜色时,需要考虑整体色调和细节的对比度,以创造出和谐的画面效果。

线条表现:线条表现是二次元图像的另一个重要方面,需要注重线条的流畅性和表现力。在绘制线条时,需要注意线条的粗细、曲直和方向等因素,以创造出具有动感和美感的画面效果。

细节处理:细节处理是二次元图像的精细部分,需要注重细节的刻画和表现。在处理细节时,需要注意角色的表情、动作、服饰等细节的描绘,以增强画面的真实感和生动感。

总之,生成二次元图像需要注重角色设计、背景设计、色彩搭配、线条表现和细节处理等方面,以创造出具有艺术感和美感的画面效果。







第三系列 城市风景系列

蓝天白云,跨海大桥,高楼大夏通过AI生成的图片效果。

生成城市风景时,GPT可以注意以下几个方面:

视觉细节:GPT可以关注城市的建筑物、街道、公园、广场等细节,包括它们的外观、颜色、形状等,以便更准确地描述城市的风景。

环境氛围:GPT可以考虑城市的气氛和氛围,如繁忙的市中心、安静的居民区、绿树成荫的公园等。它可以描述人们的活动,如散步、购物、聚会等,以及城市的声音、气味和气候条件。

文化元素:GPT可以关注城市的文化元素,如历史建筑、艺术装置、博物馆等,以及传统节日、宗教场所和其他具有文化特色的地点。它可以描述人们在城市中体验文化活动的方式和感受。

交通和基础设施:GPT可以注意城市的交通和基础设施,如道路、桥梁、地铁、公交车等。它可以描述人们如何在城市中移动和旅行的方式,以及城市中各种交通方式的特点和便利程度。

自然景观:除了城市建筑和设施,GPT还可以注意城市周围的自然景观,如河流、湖泊、山脉等。它可以描述人们如何在这些自然景观中活动和休闲,以及它们对城市风景的补充和丰富。





第四系列 简笔画系列

提示词 高亮立体化效果

在使用GPT来处理简笔画时,有几个注意事项:

数据准备:准备输入GPT的简笔画数据时,需要将其转换为适合模型处理的格式,通常是将简笔画转换为图像文件或向量表示。

数据增强:为了提高模型的鲁棒性和泛化能力,可以使用数据增强技术对简笔画进行处理,如旋转、缩放、平移等。

模型选择:选择适合处理简笔画的GPT模型,可以考虑使用已经预训练过的语言模型,并进行微调,或者使用专门针对图像和文本任务的联合模型。

模型训练:使用准备好的数据进行模型训练,可以使用监督学习的方法,将简笔画与对应的标签进行配对,也可以使用无监督学习的方法,让模型自动学习简笔画的特征。

评估和调优:对训练好的模型进行评估和调优,可以使用常见的评估指标,如准确率、召回率等,根据评估结果对模型进行进一步优化和调整。

应用场景:确定使用GPT处理简笔画的具体应用场景,如手写文字识别、图像生成等,根据不同场景的需求对模型进行适当的调整和优化。

更多绘画效果,欢迎各位朋友们私聊讨论!感谢大家观看。

相关推荐
GIOTTO情23 分钟前
媒介宣发的技术革命:Infoseek如何用AI重构企业传播全链路
大数据·人工智能·重构
阿里云大数据AI技术32 分钟前
云栖实录 | 从多模态数据到 Physical AI,PAI 助力客户快速启动 Physical AI 实践
人工智能
小关会打代码40 分钟前
计算机视觉进阶教学之颜色识别
人工智能·计算机视觉
IT小哥哥呀1 小时前
基于深度学习的数字图像分类实验与分析
人工智能·深度学习·分类
机器之心1 小时前
VAE时代终结?谢赛宁团队「RAE」登场,表征自编码器或成DiT训练新基石
人工智能·openai
机器之心1 小时前
Sutton判定「LLM是死胡同」后,新访谈揭示AI困境
人工智能·openai
大模型真好玩1 小时前
低代码Agent开发框架使用指南(四)—Coze大模型和插件参数配置最佳实践
人工智能·agent·coze
jerryinwuhan1 小时前
基于大语言模型(LLM)的城市时间、空间与情感交织分析:面向智能城市的情感动态预测与空间优化
人工智能·语言模型·自然语言处理
落雪财神意1 小时前
股指10月想法
大数据·人工智能·金融·区块链·期股
中杯可乐多加冰1 小时前
无代码开发实践|基于业务流能力快速开发市场监管系统,实现投诉处理快速响应
人工智能·低代码