flink-1.17.2的单节点部署

Apache Flink 是一个开源的流处理和批处理框架,用于大数据处理和分析。它旨在以实时和批处理模式高效处理大量数据。Flink 支持事件时间处理、精确一次语义、有状态计算等关键功能。

以下是与Apache Flink相关的一些主要特性和概念:

  1. 流处理和批处理:

    • 流处理: Flink 支持流处理,允许您实时处理数据。
    • 批处理: Flink 也支持批处理,以分布式和容错的方式处理大量数据。
  2. 事件时间处理:

    • Flink 允许根据实际发生时间而不是到达时间来处理事件,对于准确和有意义的事件数据分析至关重要。
  3. 精确一次语义:

    • Flink 支持精确一次处理语义,确保每个事件仅被处理一次,即使发生故障也不会丢失数据完整性。
  4. 有状态计算:

    • Flink 支持有状态应用程序的开发,允许您跨事件和时间保留和更新状态。这对于需要在一段时间内记住和聚合信息的场景非常重要。
  5. 容错性:

    • Flink 设计为容错的,提供从故障中恢复而不丢失数据完整性的机制。
  6. 丰富的 API 集:

    • Flink 提供了 Java、Scala 和 Python 的 API,使其适用于各种开发人员。API 包括用于批处理的 DataSet API 和用于流处理的 DataStream API。
  7. 库和连接器:

    • Flink 配备了多个库和连接器,用于常见用例,如 FlinkML 用于机器学习、Flink Gelly 用于图处理,以及与 Apache Kafka、Apache Hadoop 等的连接器。
  8. 社区和生态系统:

    • Flink 拥有充满活力的开源社区,是 Apache Software Foundation 的一部分。它具有由社区开发的扩展和工具的不断增长的生态系统。
  9. 动态扩展:

    • Flink 支持动态扩展,允许您在运行时调整操作符的并行实例数以适应变化的工作负载。
  10. 兼容性:

    • Flink 可在各种集群管理器上运行,包括 Apache Mesos、Apache Hadoop YARN 和 Kubernetes。它还与其他大数据技术集成。

总体而言,Apache Flink 是构建实时和批处理数据处理应用程序的强大而灵活的框架,适用于大数据领域的各种用例。

1.Local本地模式

1.1 原理

主节点JobManager(Master)和从节点TaskManager(Slave)在一台机器上模拟

  1. Flink程序由JobClient进行提交

  2. JobClient将任务提交给JobManager

  3. JobManager只负责协调分配资源和分发任务,资源分配完成后将任务提交给相应的TaskManager

  4. TaskManager启动一个线程开始执行任务,TaskManager会向JobManager报告状态的变更, 例如:开始执行、正在执行、执行完成

  5. 作业执行完成后,结果将发送回客户端(JobClient)

1.2 安装

复制代码
yum install java-1.8.0-openjdk.x86_64
yum install -y  java-1.8.0-openjdk-devel

wget --no-check-certificate https://mirrors.tuna.tsinghua.edu.cn/apache/flink/flink-1.17.2/flink-1.17.2-bin-scala_2.12.tgz

mkdir -p /opt/flink
tar -zxvf flink-1.17.2-bin-scala_2.12.tgz -C /opt/flink 

1.3 测试

复制代码
/opt/flink/flink-1.17.2/bin/stop-cluster.sh
/opt/flink/flink-1.17.2/bin/start-cluster.sh 

访问http://10.6.8.227:8081/
复制代码
# 可以只执行上面这个,也可以加上下面的参数
/opt/flink/flink-1.17.2/bin/flink run /opt/flink/flink-1.17.2/examples/batch/WordCount.jar  --input /root/words.txt  --output /root/out

停止Flink:
/opt/flink/flink-1.17.2/bin/stop-cluster.sh
相关推荐
IALab-检测行业AI报告生成1 小时前
IACheck AI 报告审核助手:整体架构与详细结构说明
大数据·人工智能·架构·ai报告审核
码农杂谈00071 小时前
AI 原生企业内容管理:4 大转型策略,破解老软件 AI 升级难题
大数据·人工智能·内容中台·企业内容管理系统·内容生产·ai内容生产·生成式 ai 品牌力
tuotali20263 小时前
氢气压缩机技术核心要点测评
大数据·人工智能
志栋智能4 小时前
AI驱动的系统自动化巡检:重塑IT基石的智慧“守护神”
大数据·运维·人工智能·云原生·自动化
qyr67895 小时前
便携式太阳能折叠板市场白皮书与未来趋势展望
大数据·人工智能·物联网·市场分析·市场报告·便携式太阳能折叠板·太阳能折叠板
码农杂谈00076 小时前
企业 AI 推理:告别黑箱决策,4 步构建可解释 AI 体系
大数据·人工智能
LaughingZhu6 小时前
Product Hunt 每日热榜 | 2026-02-18
大数据·数据库·人工智能·经验分享·搜索引擎
城数派7 小时前
我国逐日地表气压栅格数据(2005-2025年)
大数据·数据分析
派可数据BI可视化8 小时前
一文读懂系列:数据仓库为什么分层,分几层?数仓建模方法有哪些
大数据·数据仓库·信息可视化·spark·商业智能bi
Light608 小时前
不止于名:领码 SPARK 如何“链”动数据仓库、数据湖、中台与湖仓一体新纪元
大数据·数据仓库·数据湖·ipaas·湖仓一体·数据中台·领码 spark