【CMU 15-445】Lecture 10: Sorting & Aggregations Algorithms 学习笔记

Sorting & Aggregations Algorithms

  • Sorting
    • [Top-N Heap Sort](#Top-N Heap Sort)
    • [External Merge Sort](#External Merge Sort)
      • [2-WAY External Merge Sort](#2-WAY External Merge Sort)
      • [K-WAY External Merge Sort](#K-WAY External Merge Sort)
      • [Double Buffering Optimization](#Double Buffering Optimization)
  • Aggregations

本节课主要介绍的是数据库系统中的排序算法以及聚合算法

Sorting

排序算法分为两种:如果内存能够容纳一个关系的所有tuple,那么可以用任意的标准排序算法在内存中进行排序,如插入排序、快速排序等等;如果内存无法容纳一个关系的所有tuple,则只能使用外排序。

Top-N Heap Sort

如果一个查询包含ORDER BY加上LIMIT关键字的组合,则可以使用Top-N堆排序的做法,如下图所示,推排序的细节就不多讲了。

External Merge Sort

一种外排序算法是外部归并排序,主要分为以下两个步骤:

  • Divide:将文件中的记录分为若干个归并段,使得每个归并段都能被加载到内存中进行单独排序
  • Conquer:将若干个有序的归并段merge成最终结果

2-WAY External Merge Sort

一个简单的merge做法是二路归并,如下图例子所示,每次merge合并两个归并段,以此类推直到所有归并段合成一个段为止。在二路归并做法中,只需要内存提供三个缓存页(两个用于加载待merge的归并段,一个用于存放merge结果)。我们可以简单的估计该做法的IO复杂度,假设存放tuplepage数量为 N N N,则我们最多需要做 ⌈ l o g 2 N ⌉ \lceil log_2N \rceil ⌈log2N⌉次归并,且每次归并需要对每个page进行读写,共计 2 N 2N 2N次IO操作,故总复杂度为 2 N ∗ ( 1 + ⌈ l o g 2 N ⌉ ) 2N*(1+\lceil log_2N \rceil) 2N∗(1+⌈log2N⌉)(需要加上第一次做内部排序的IO)

K-WAY External Merge Sort

更进阶的做法是将二路归并扩展至K路归并,因为二路归并中没有充分利用内存缓冲区(只是用了三页缓冲页)。假设内存缓冲页数量为 B B B,可以在排序阶段就充分利用缓冲页进行优化,一次性加载 B B B个page进行排序,相当于把 B B B个page合成一个归并段了,这样子在开始归并之前就只有 ⌈ N B ⌉ \lceil \frac{N}{B} \rceil ⌈BN⌉个归并段;在归并阶段,最多可以利用 B − 1 B-1 B−1个缓存页进行多路归并(需要预留一个缓存页存放归并结果)。于是,最多只需执行 ⌈ l o g B − 1 ⌈ N B ⌉ ⌉ \lceil log_{B-1}\lceil \frac{N}{B} \rceil \rceil ⌈logB−1⌈BN⌉⌉次归并,每次归并的IO次数仍为 2 N 2N 2N,故总复杂度为 2 N ∗ ( 1 + ⌈ l o g B − 1 ⌈ N B ⌉ ⌉ ) 2N*(1+\lceil log_{B-1}\lceil \frac{N}{B} \rceil \rceil) 2N∗(1+⌈logB−1⌈BN⌉⌉)(需要加上第一次做内部排序的IO)

Double Buffering Optimization

可以使用两个buffer,当其中一个buffer在做排序处理时,将下一步需要处理的数据预加载到另一个buffer中,充分利用CPU与IO资源。

Aggregations

聚合操作一般有两种实现方式:排序以及哈希。

Sorting

在聚合的排序实现方式中,算法首先按照GROUP BY的keytuple进行排序,使用第一节所讲的内排序或外排序。然后按序遍历元组进行聚合(因为此时相同key的元组处于相邻位置)

Hashing

在很多情况下,聚合操作并不要求元组是有序的,可以使用效率更高的哈希实现方法进行替代。哈希实现方式分为两个步骤:

  • Partition:首先使用哈希函数h1将所有tuple按照GROUP BY的key进行分区(若内存中有 B B B个缓存页,则分为 B − 1 B-1 B−1个分区)
  • ReHash:对于每一个分区,使用哈希函数h2在内存中建立哈希表,并维护聚合所需信息(如最小值、总和等)

一个简单的例子如下图所示,如果想要求每一个分组的平均值,则在ReHash阶段,需要维护COUNT和SUM以便最后算出平均值。

相关推荐
长路归期无望2 小时前
C语言小白实现多功能计算器的艰难历程
c语言·开发语言·数据结构·笔记·学习·算法
恒悦sunsite2 小时前
Ubuntu之apt安装ClickHouse数据库
数据库·clickhouse·ubuntu·列式存储·8123
奥尔特星云大使3 小时前
MySQL 慢查询日志slow query log
android·数据库·mysql·adb·慢日志·slow query log
来自宇宙的曹先生3 小时前
MySQL 存储引擎 API
数据库·mysql
间彧3 小时前
MySQL Performance Schema详解与实战应用
数据库
间彧3 小时前
MySQL Exporter采集的关键指标有哪些,如何解读这些指标?
数据库
weixin_446260853 小时前
Django - 让开发变得简单高效的Web框架
前端·数据库·django
mpHH3 小时前
babelfish for postgresql 分析--todo
数据库·postgresql
zizisuo4 小时前
解决在使用Lombok时maven install 找不到符号的问题
java·数据库·maven
yuxb734 小时前
Ceph 分布式存储学习笔记(二):池管理、认证和授权管理与集群配置(下)
笔记·ceph·学习