【CMU 15-445】Lecture 10: Sorting & Aggregations Algorithms 学习笔记

Sorting & Aggregations Algorithms

  • Sorting
    • [Top-N Heap Sort](#Top-N Heap Sort)
    • [External Merge Sort](#External Merge Sort)
      • [2-WAY External Merge Sort](#2-WAY External Merge Sort)
      • [K-WAY External Merge Sort](#K-WAY External Merge Sort)
      • [Double Buffering Optimization](#Double Buffering Optimization)
  • Aggregations

本节课主要介绍的是数据库系统中的排序算法以及聚合算法

Sorting

排序算法分为两种:如果内存能够容纳一个关系的所有tuple,那么可以用任意的标准排序算法在内存中进行排序,如插入排序、快速排序等等;如果内存无法容纳一个关系的所有tuple,则只能使用外排序。

Top-N Heap Sort

如果一个查询包含ORDER BY加上LIMIT关键字的组合,则可以使用Top-N堆排序的做法,如下图所示,推排序的细节就不多讲了。

External Merge Sort

一种外排序算法是外部归并排序,主要分为以下两个步骤:

  • Divide:将文件中的记录分为若干个归并段,使得每个归并段都能被加载到内存中进行单独排序
  • Conquer:将若干个有序的归并段merge成最终结果

2-WAY External Merge Sort

一个简单的merge做法是二路归并,如下图例子所示,每次merge合并两个归并段,以此类推直到所有归并段合成一个段为止。在二路归并做法中,只需要内存提供三个缓存页(两个用于加载待merge的归并段,一个用于存放merge结果)。我们可以简单的估计该做法的IO复杂度,假设存放tuplepage数量为 N N N,则我们最多需要做 ⌈ l o g 2 N ⌉ \lceil log_2N \rceil ⌈log2N⌉次归并,且每次归并需要对每个page进行读写,共计 2 N 2N 2N次IO操作,故总复杂度为 2 N ∗ ( 1 + ⌈ l o g 2 N ⌉ ) 2N*(1+\lceil log_2N \rceil) 2N∗(1+⌈log2N⌉)(需要加上第一次做内部排序的IO)

K-WAY External Merge Sort

更进阶的做法是将二路归并扩展至K路归并,因为二路归并中没有充分利用内存缓冲区(只是用了三页缓冲页)。假设内存缓冲页数量为 B B B,可以在排序阶段就充分利用缓冲页进行优化,一次性加载 B B B个page进行排序,相当于把 B B B个page合成一个归并段了,这样子在开始归并之前就只有 ⌈ N B ⌉ \lceil \frac{N}{B} \rceil ⌈BN⌉个归并段;在归并阶段,最多可以利用 B − 1 B-1 B−1个缓存页进行多路归并(需要预留一个缓存页存放归并结果)。于是,最多只需执行 ⌈ l o g B − 1 ⌈ N B ⌉ ⌉ \lceil log_{B-1}\lceil \frac{N}{B} \rceil \rceil ⌈logB−1⌈BN⌉⌉次归并,每次归并的IO次数仍为 2 N 2N 2N,故总复杂度为 2 N ∗ ( 1 + ⌈ l o g B − 1 ⌈ N B ⌉ ⌉ ) 2N*(1+\lceil log_{B-1}\lceil \frac{N}{B} \rceil \rceil) 2N∗(1+⌈logB−1⌈BN⌉⌉)(需要加上第一次做内部排序的IO)

Double Buffering Optimization

可以使用两个buffer,当其中一个buffer在做排序处理时,将下一步需要处理的数据预加载到另一个buffer中,充分利用CPU与IO资源。

Aggregations

聚合操作一般有两种实现方式:排序以及哈希。

Sorting

在聚合的排序实现方式中,算法首先按照GROUP BY的keytuple进行排序,使用第一节所讲的内排序或外排序。然后按序遍历元组进行聚合(因为此时相同key的元组处于相邻位置)

Hashing

在很多情况下,聚合操作并不要求元组是有序的,可以使用效率更高的哈希实现方法进行替代。哈希实现方式分为两个步骤:

  • Partition:首先使用哈希函数h1将所有tuple按照GROUP BY的key进行分区(若内存中有 B B B个缓存页,则分为 B − 1 B-1 B−1个分区)
  • ReHash:对于每一个分区,使用哈希函数h2在内存中建立哈希表,并维护聚合所需信息(如最小值、总和等)

一个简单的例子如下图所示,如果想要求每一个分组的平均值,则在ReHash阶段,需要维护COUNT和SUM以便最后算出平均值。

相关推荐
我爱挣钱我也要早睡!2 小时前
Java 复习笔记
java·开发语言·笔记
luckys.one5 小时前
第9篇:Freqtrade量化交易之config.json 基础入门与初始化
javascript·数据库·python·mysql·算法·json·区块链
言之。6 小时前
Django中的软删除
数据库·django·sqlite
汇能感知7 小时前
摄像头模块在运动相机中的特殊应用
经验分享·笔记·科技
阿巴Jun7 小时前
【数学】线性代数知识点总结
笔记·线性代数·矩阵
茯苓gao7 小时前
STM32G4 速度环开环,电流环闭环 IF模式建模
笔记·stm32·单片机·嵌入式硬件·学习
是誰萆微了承諾7 小时前
【golang学习笔记 gin 】1.2 redis 的使用
笔记·学习·golang
阿里嘎多哈基米7 小时前
SQL 层面行转列
数据库·sql·状态模式·mapper·行转列
抠脚学代码8 小时前
Ubuntu Qt x64平台搭建 arm64 编译套件
数据库·qt·ubuntu
jakeswang8 小时前
全解MySQL之死锁问题分析、事务隔离与锁机制的底层原理剖析
数据库·mysql