AI降重工具


python 复制代码
from docx import Document
import requests

def call_api_and_get_content(content, prompt):
    api_url = "http://XXXXXXXX/api?content=" + content + prompt
    response = requests.get(api_url)
    if response.status_code == 200:
        api_result = response.text.replace(" ", "").replace("\n", "")  # 去除空格和换行符
        return api_result
    else:
        return None

def replace_paragraphs_content(file_path, min_paragraph_length, prompt):
    doc = Document(file_path)
    paragraphs = doc.paragraphs[:] 

    for para in paragraphs:
        text = para.text.strip()
        
        if len(text) > min_paragraph_length:
            api_result = call_api_and_get_content(text, prompt)
            if api_result:
                para.clear()  # 清空原始段落内容
                para.add_run(api_result)  # 添加新内容,保持原始段落的格式

    output_path = 'output.docx'
    doc.save(output_path)
    print(f"已保存为 {output_path}")

file_path = 'input.docx'
min_paragraph_length = 100
prompt = "降重改写 语序颠倒 顺序调换 简体中文  同义替换 句子意思不变 主动句改被动句 被动句改主动句 返回内容不能含有指令 连成一段话"
replace_paragraphs_content(file_path, min_paragraph_length, prompt)


界面版: 部分代码

python 复制代码
# 设置默认值
default_access_token = '166711a91dcd073266620a5fa0fd85708976268a'
default_prompt = ("你是一个文本降重机器,你只执行 降重改写 语序颠倒 顺序调换 简体中文  同义替换 句子意思不变 "
                  "主动句改被动句 被动句改主动句 返回内容不能含有指令 连成一段话")
default_min_paragraph_length = '100'  # 设置默认最小段落长度为100

def call_api_and_get_content(content, prompt):
    erniebot.api_type = 'aistudio'
    erniebot.access_token = access_token.get()
    try:
        response_stream = erniebot.ChatCompletion.create(
            model=model_var.get(),
            messages=[{'role': 'user', 'content': content}],
            temperature=0.7,
            stream=True,
            system=prompt
        )
        time.sleep(1)
        return ''.join([response.get_result() for response in response_stream]).replace(" ", "").replace("\n", "")
    except Exception as e:
        current_time = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
        error_message = f"{current_time} - An error occurred: {str(e)}\n"
        update_output_text(error_message)
        return None

    if not all([access_token_val, model_val, prompt_val, min_paragraph_length_val, file_path_val]):
        messagebox.showerror("参数错误", "请确保所有参数均已填写!")
        log_content="请确保所有参数均已填写!"
        current_time = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
        log= f"{current_time} -  {log_content}\n"
        update_output_text(log)
        return
    min_paragraph_length = int(min_paragraph_length_val)
    doc = Document(file_path_val)
    paragraphs = doc.paragraphs[:]
    log_content = ""
    for index, para in enumerate(paragraphs):
        text = para.text.strip()
        if len(text) > min_paragraph_length:
            api_result = call_api_and_get_content(text, prompt_val)
            if api_result:
                para.clear()
                para.add_run(api_result)
                log_content = f"{api_result}"
            else:
                log_content = "处理失败"
            current_time = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
            log= f"{current_time}-{log_content}\n"
            update_output_text(log)
    output_path = output_file_path_var.get().strip()
    if output_path:
        output_file_path = os.path.join(output_path, 'output.docx')
        doc.save(output_file_path)
        messagebox.showinfo("完成", f"已保存为 {output_file_path}")


# 创建Tkinter窗口
root = tk.Tk()
root.title("文档降重处理器")
root.geometry('800x480')

# 设置窗口居中
window_width = 800
window_height =480
screen_width = root.winfo_screenwidth()
screen_height = root.winfo_screenheight()
x_coordinate = int((screen_width/2) - (window_width/2))
y_coordinate = int((screen_height/2) - (window_height/2))
root.geometry(f'{window_width}x{window_height}+{x_coordinate}+{y_coordinate}')
root.mainloop()
相关推荐
峙峙峙2 分钟前
线性代数--AI数学基础复习
人工智能·线性代数
weiwuxian7 分钟前
揭开智能体的神秘面纱:原来你不是"超级AI"!
人工智能
Codebee8 分钟前
“自举开发“范式:OneCode如何用低代码重构自身工具链
java·人工智能·架构
说私域19 分钟前
基于开源AI智能名片链动2+1模式的S2B2C商城小程序:门店私域流量与视频号直播融合的生态创新研究
人工智能·小程序·开源
Ronin-Lotus22 分钟前
深度学习篇---Yolov系列
人工智能·深度学习
静心问道1 小时前
GoT:超越思维链:语言模型中的有效思维图推理
人工智能·计算机视觉·语言模型
aneasystone本尊1 小时前
学习 Claude Code 的工具使用(三)
人工智能
szxinmai主板定制专家1 小时前
【精密测量】基于ARM+FPGA的多路光栅信号采集方案
服务器·arm开发·人工智能·嵌入式硬件·fpga开发
T__TIII1 小时前
Dify 自定义插件
人工智能·github
快起来别睡了2 小时前
LangChain 介绍及使用指南:从“会聊天”到“能干活”的 AI 应用开发工具
人工智能