LSTM和GRU的介绍以及Pytorch源码解析

介绍一下LSTM模型的结构以及源码,用作自己复习的材料。

LSTM模型所对应的源码在:\PyTorch\Lib\site-packages\torch\nn\modules\RNN.py文件中。

上次上一篇文章介绍了RNN序列模型,但是RNN模型存在比较严重的梯度爆炸和梯度消失问题。

本文介绍的LSTM模型解决的RNN的大部分缺陷。

首先展示LSTM的模型框架:

下面是LSTM模型的数学推导公式:

表示时刻的隐藏状态,表示时刻的记忆细胞状态,表示时刻的输入,表示在时间的隐藏状态或在时间的初始隐藏状态。

分别是输入门、遗忘门、单元门和输出门。

这张图片比较好的介绍了各个门之间的交互关系以及输入输出,大家可以放大看一下。

接下来展示GRU的框架模型:

下面是GRU的数学推导公式:

表示时刻的隐藏状态,表示时刻的输入,表示在时间的隐藏状态或在时间的初始隐藏状态。分别表示重置门更新门和新建门

上面的图片可以更直观的看到GRU中是如何迭代的。

接下来我们看一下源码中LSTM和GRU类的初始化(只介绍几个重要的参数):

torch.nn.LSTM(self, input_size, hidden_size, num_layers=1,
              bias=True, batch_first=False, dropout=0.0, 
              bidirectional=False, proj_size=0, device=None,
              dtype=None)

torch.nn.GRU(self, input_size, hidden_size, num_layers=1,
             bias=True, batch_first=False, dropout=0.0, 
             bidirectional=False, device=None, dtype=None)
  • input_size:输入数据中的特征数(可以理解为嵌入维度 embedding_dim)。
  • hidden_size:处于隐藏状态 h 的特征数(可以理解为输出的特征维度)。
  • num_layers:代表着RNN的层数,默认是1(层),当该参数大于零时,又称为多层RNN。
  • bidirectional:即是否启用双向LSTM(GRU),默认关闭。

LSTM与GRU都是特殊的RNN,因此输入输出可以参考的上一篇介绍RNN的文章,在这里直接进行代码举例。

lstm1 = nn.LSTM(input_size=20,hidden_size=40,num_layers=4,bidirectional=True)
lstm2 = nn.LSTM(input_size=20,hidden_size=40,num_layers=4,bidirectional=False)

gru1 = nn.GRU(input_size=20,hidden_size=25,num_layers=4,bidirectional=True)
gru2 = nn.GRU(input_size=20,hidden_size=25,num_layers=4,bidirectional=False)

tensor1 = torch.randn(5,10,20)  # (batch_size * seq_len * emb_dim)
tensor2 = torch.randn(5,10,20)  # (batch_size * seq_len * emb_dim)

out_lstm1,(hn, cn) = lstm1(tensor1)  # (batch_size * seq_len * (hidden_size * bidirectional))
out_lstm2,(hn, cn) = lstm2(tensor2)  # (batch_size * seq_len * (hidden_size * bidirectional))

out_gru1,h_n = gru1(tensor1)  # (batch_size * seq_len * (hidden_size * bidirectional))
out_gru2,h_n = gru2(tensor1)  # (batch_size * seq_len * (hidden_size * bidirectional))

print(out_lstm1.shape)  # torch.Size([5, 10, 80])
print(out_lstm2.shape)  # torch.Size([5, 10, 40])

print(out_gru1.shape)  # torch.Size([5, 10, 50])
print(out_gru2.shape)  # torch.Size([5, 10, 25])

维度已经在注释中给大家标注上了!

相关推荐
世优科技虚拟人几秒前
AI、VR与空间计算:教育和文旅领域的数字转型力量
人工智能·vr·空间计算
cloud studio AI应用7 分钟前
腾讯云 AI 代码助手:产品研发过程的思考和方法论
人工智能·云计算·腾讯云
机器学习之心13 分钟前
一区北方苍鹰算法优化+创新改进Transformer!NGO-Transformer-LSTM多变量回归预测
算法·lstm·transformer·北方苍鹰算法优化·多变量回归预测·ngo-transformer
禁默18 分钟前
第六届机器人、智能控制与人工智能国际学术会议(RICAI 2024)
人工智能·机器人·智能控制
Robot25126 分钟前
浅谈,华为切入具身智能赛道
人工智能
只怕自己不够好31 分钟前
OpenCV 图像运算全解析:加法、位运算(与、异或)在图像处理中的奇妙应用
图像处理·人工智能·opencv
果冻人工智能2 小时前
2025 年将颠覆商业的 8 大 AI 应用场景
人工智能·ai员工
代码不行的搬运工2 小时前
神经网络12-Time-Series Transformer (TST)模型
人工智能·神经网络·transformer
石小石Orz2 小时前
Three.js + AI:AI 算法生成 3D 萤火虫飞舞效果~
javascript·人工智能·算法
孤独且没人爱的纸鹤2 小时前
【深度学习】:从人工神经网络的基础原理到循环神经网络的先进技术,跨越智能算法的关键发展阶段及其未来趋势,探索技术进步与应用挑战
人工智能·python·深度学习·机器学习·ai