LSTM和GRU的介绍以及Pytorch源码解析

介绍一下LSTM模型的结构以及源码,用作自己复习的材料。

LSTM模型所对应的源码在:\PyTorch\Lib\site-packages\torch\nn\modules\RNN.py文件中。

上次上一篇文章介绍了RNN序列模型,但是RNN模型存在比较严重的梯度爆炸和梯度消失问题。

本文介绍的LSTM模型解决的RNN的大部分缺陷。

首先展示LSTM的模型框架:

下面是LSTM模型的数学推导公式:

表示时刻的隐藏状态,表示时刻的记忆细胞状态,表示时刻的输入,表示在时间的隐藏状态或在时间的初始隐藏状态。

分别是输入门、遗忘门、单元门和输出门。

这张图片比较好的介绍了各个门之间的交互关系以及输入输出,大家可以放大看一下。

接下来展示GRU的框架模型:

下面是GRU的数学推导公式:

表示时刻的隐藏状态,表示时刻的输入,表示在时间的隐藏状态或在时间的初始隐藏状态。分别表示重置门更新门和新建门

上面的图片可以更直观的看到GRU中是如何迭代的。

接下来我们看一下源码中LSTM和GRU类的初始化(只介绍几个重要的参数):

复制代码
torch.nn.LSTM(self, input_size, hidden_size, num_layers=1,
              bias=True, batch_first=False, dropout=0.0, 
              bidirectional=False, proj_size=0, device=None,
              dtype=None)

torch.nn.GRU(self, input_size, hidden_size, num_layers=1,
             bias=True, batch_first=False, dropout=0.0, 
             bidirectional=False, device=None, dtype=None)
  • input_size:输入数据中的特征数(可以理解为嵌入维度 embedding_dim)。
  • hidden_size:处于隐藏状态 h 的特征数(可以理解为输出的特征维度)。
  • num_layers:代表着RNN的层数,默认是1(层),当该参数大于零时,又称为多层RNN。
  • bidirectional:即是否启用双向LSTM(GRU),默认关闭。

LSTM与GRU都是特殊的RNN,因此输入输出可以参考的上一篇介绍RNN的文章,在这里直接进行代码举例。

复制代码
lstm1 = nn.LSTM(input_size=20,hidden_size=40,num_layers=4,bidirectional=True)
lstm2 = nn.LSTM(input_size=20,hidden_size=40,num_layers=4,bidirectional=False)

gru1 = nn.GRU(input_size=20,hidden_size=25,num_layers=4,bidirectional=True)
gru2 = nn.GRU(input_size=20,hidden_size=25,num_layers=4,bidirectional=False)

tensor1 = torch.randn(5,10,20)  # (batch_size * seq_len * emb_dim)
tensor2 = torch.randn(5,10,20)  # (batch_size * seq_len * emb_dim)

out_lstm1,(hn, cn) = lstm1(tensor1)  # (batch_size * seq_len * (hidden_size * bidirectional))
out_lstm2,(hn, cn) = lstm2(tensor2)  # (batch_size * seq_len * (hidden_size * bidirectional))

out_gru1,h_n = gru1(tensor1)  # (batch_size * seq_len * (hidden_size * bidirectional))
out_gru2,h_n = gru2(tensor1)  # (batch_size * seq_len * (hidden_size * bidirectional))

print(out_lstm1.shape)  # torch.Size([5, 10, 80])
print(out_lstm2.shape)  # torch.Size([5, 10, 40])

print(out_gru1.shape)  # torch.Size([5, 10, 50])
print(out_gru2.shape)  # torch.Size([5, 10, 25])

维度已经在注释中给大家标注上了!

相关推荐
weixin_446260852 小时前
LocalAI:一个免费开源的AI替代方案,让创意更自由!
人工智能·开源
CAE3202 小时前
基于机器学习的智能垃圾短信检测超强系统
人工智能·python·机器学习·自然语言处理·垃圾短信拦截
骄傲的心别枯萎2 小时前
RV1126 NO.37:OPENCV的图像叠加功能
人工智能·opencv·计算机视觉·音视频·视频编解码·rv1126
HyperAI超神经2 小时前
解决蛋白质构象异质性的原子级建模挑战!David Baker团队PLACER框架解析
人工智能·深度学习·ai·ai4s·蛋白质结构
TG:@yunlaoda360 云老大5 小时前
腾讯WAIC发布“1+3+N”AI全景图:混元3D世界模型开源,具身智能平台Tairos亮相
人工智能·3d·开源·腾讯云
这张生成的图像能检测吗5 小时前
(论文速读)Fast3R:在一个向前通道中实现1000+图像的3D重建
人工智能·深度学习·计算机视觉·3d重建
兴趣使然黄小黄8 小时前
【AI-agent】LangChain开发智能体工具流程
人工智能·microsoft·langchain
出门吃三碗饭8 小时前
Transformer前世今生——使用pytorch实现多头注意力(八)
人工智能·深度学习·transformer
l1t8 小时前
利用DeepSeek改写SQLite版本的二进制位数独求解SQL
数据库·人工智能·sql·sqlite
说私域8 小时前
开源AI智能名片链动2+1模式S2B2C商城小程序FAQ设计及其意义探究
人工智能·小程序