LSTM和GRU的介绍以及Pytorch源码解析

介绍一下LSTM模型的结构以及源码,用作自己复习的材料。

LSTM模型所对应的源码在:\PyTorch\Lib\site-packages\torch\nn\modules\RNN.py文件中。

上次上一篇文章介绍了RNN序列模型,但是RNN模型存在比较严重的梯度爆炸和梯度消失问题。

本文介绍的LSTM模型解决的RNN的大部分缺陷。

首先展示LSTM的模型框架:

下面是LSTM模型的数学推导公式:

表示时刻的隐藏状态,表示时刻的记忆细胞状态,表示时刻的输入,表示在时间的隐藏状态或在时间的初始隐藏状态。

分别是输入门、遗忘门、单元门和输出门。

这张图片比较好的介绍了各个门之间的交互关系以及输入输出,大家可以放大看一下。

接下来展示GRU的框架模型:

下面是GRU的数学推导公式:

表示时刻的隐藏状态,表示时刻的输入,表示在时间的隐藏状态或在时间的初始隐藏状态。分别表示重置门更新门和新建门

上面的图片可以更直观的看到GRU中是如何迭代的。

接下来我们看一下源码中LSTM和GRU类的初始化(只介绍几个重要的参数):

复制代码
torch.nn.LSTM(self, input_size, hidden_size, num_layers=1,
              bias=True, batch_first=False, dropout=0.0, 
              bidirectional=False, proj_size=0, device=None,
              dtype=None)

torch.nn.GRU(self, input_size, hidden_size, num_layers=1,
             bias=True, batch_first=False, dropout=0.0, 
             bidirectional=False, device=None, dtype=None)
  • input_size:输入数据中的特征数(可以理解为嵌入维度 embedding_dim)。
  • hidden_size:处于隐藏状态 h 的特征数(可以理解为输出的特征维度)。
  • num_layers:代表着RNN的层数,默认是1(层),当该参数大于零时,又称为多层RNN。
  • bidirectional:即是否启用双向LSTM(GRU),默认关闭。

LSTM与GRU都是特殊的RNN,因此输入输出可以参考的上一篇介绍RNN的文章,在这里直接进行代码举例。

复制代码
lstm1 = nn.LSTM(input_size=20,hidden_size=40,num_layers=4,bidirectional=True)
lstm2 = nn.LSTM(input_size=20,hidden_size=40,num_layers=4,bidirectional=False)

gru1 = nn.GRU(input_size=20,hidden_size=25,num_layers=4,bidirectional=True)
gru2 = nn.GRU(input_size=20,hidden_size=25,num_layers=4,bidirectional=False)

tensor1 = torch.randn(5,10,20)  # (batch_size * seq_len * emb_dim)
tensor2 = torch.randn(5,10,20)  # (batch_size * seq_len * emb_dim)

out_lstm1,(hn, cn) = lstm1(tensor1)  # (batch_size * seq_len * (hidden_size * bidirectional))
out_lstm2,(hn, cn) = lstm2(tensor2)  # (batch_size * seq_len * (hidden_size * bidirectional))

out_gru1,h_n = gru1(tensor1)  # (batch_size * seq_len * (hidden_size * bidirectional))
out_gru2,h_n = gru2(tensor1)  # (batch_size * seq_len * (hidden_size * bidirectional))

print(out_lstm1.shape)  # torch.Size([5, 10, 80])
print(out_lstm2.shape)  # torch.Size([5, 10, 40])

print(out_gru1.shape)  # torch.Size([5, 10, 50])
print(out_gru2.shape)  # torch.Size([5, 10, 25])

维度已经在注释中给大家标注上了!

相关推荐
小鸡吃米…6 小时前
机器学习 - K - 中心聚类
人工智能·机器学习·聚类
好奇龙猫6 小时前
【AI学习-comfyUI学习-第三十节-第三十一节-FLUX-SD放大工作流+FLUX图生图工作流-各个部分学习】
人工智能·学习
沈浩(种子思维作者)7 小时前
真的能精准医疗吗?癌症能提前发现吗?
人工智能·python·网络安全·健康医疗·量子计算
minhuan7 小时前
大模型应用:大模型越大越好?模型参数量与效果的边际效益分析.51
人工智能·大模型参数评估·边际效益分析·大模型参数选择
Cherry的跨界思维7 小时前
28、AI测试环境搭建与全栈工具实战:从本地到云平台的完整指南
java·人工智能·vue3·ai测试·ai全栈·测试全栈·ai测试全栈
MM_MS7 小时前
Halcon变量控制类型、数据类型转换、字符串格式化、元组操作
开发语言·人工智能·深度学习·算法·目标检测·计算机视觉·视觉检测
ASF1231415sd7 小时前
【基于YOLOv10n-CSP-PTB的大豆花朵检测与识别系统详解】
人工智能·yolo·目标跟踪
水如烟8 小时前
孤能子视角:“意识“的阶段性回顾,“感质“假说
人工智能
Carl_奕然8 小时前
【数据挖掘】数据挖掘必会技能之:A/B测试
人工智能·python·数据挖掘·数据分析
旅途中的宽~8 小时前
《European Radiology》:2024血管瘤分割—基于MRI T1序列的分割算法
人工智能·计算机视觉·mri·sci一区top·血管瘤·t1