【计算机视觉--解耦视频分割跟踪任何物体】

UIUC&Adobe开源|无需监督,使用解耦视频分割跟踪任何物体!视频分割的训练数据往往昂贵且需要大量的标注工作。这限制了将端到端算法扩展到新的视频分割任务,特别是在大词汇量的情况下。为了在不为每个个别任务训练视频数据的情况下实现"跟踪任何物体",开发了一种解耦视频分割方法(DEVA),包括任务特定的图像级分割和类/任务无关的双向时间传播。由于这种设计,只需要为目标任务训练一个图像级别的模型(这更便宜),以及一个通用的时间传播模型,只需训练一次即可适用于多个任务。为了有效地结合这两个模块,使用双向传播来对来自不同帧的分割假设进行(半)在线融合,以生成一致的分割结果。展示了这种解耦的方法在多个数据稀缺任务中表现出色,包括大词汇量视频全景分割、开放世界视频分割、指代视频分割和无监督视频对象分割。

项目主页:https://hkchengrex.com/Tracking-Anything-with-DEVA/

论文地址:https://arxiv.org/abs/2309.03903

代码地址:https://github.com/hkchengrex/Tracking-Anything-with-DEVA

相关推荐
程序员Linc7 分钟前
写给新人的深度学习扫盲贴:向量与矩阵
人工智能·深度学习·矩阵·向量
xcLeigh15 分钟前
OpenCV从零开始:30天掌握图像处理基础
图像处理·人工智能·python·opencv
果冻人工智能18 分钟前
如何有效应对 RAG 中的复杂查询?
人工智能
2305_7978820927 分钟前
AI识图小程序的功能框架设计
人工智能·微信小程序·小程序
果冻人工智能29 分钟前
向量搜索中常见的8个错误(以及如何避免它们)
人工智能
碳基学AI34 分钟前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义免费下载方法
大数据·人工智能·python·gpt·算法·语言模型·集成学习
补三补四37 分钟前
机器学习-聚类分析算法
人工智能·深度学习·算法·机器学习
果冻人工智能1 小时前
法官们终于似乎明白了:如果没有复制,那就没有版权
人工智能
tle_sammy1 小时前
AI 重构老旧系统:创业新曙光
人工智能·重构
果冻人工智能1 小时前
什么是 MCP,以及你为什么该关注它
人工智能