【计算机视觉--解耦视频分割跟踪任何物体】

UIUC&Adobe开源|无需监督,使用解耦视频分割跟踪任何物体!视频分割的训练数据往往昂贵且需要大量的标注工作。这限制了将端到端算法扩展到新的视频分割任务,特别是在大词汇量的情况下。为了在不为每个个别任务训练视频数据的情况下实现"跟踪任何物体",开发了一种解耦视频分割方法(DEVA),包括任务特定的图像级分割和类/任务无关的双向时间传播。由于这种设计,只需要为目标任务训练一个图像级别的模型(这更便宜),以及一个通用的时间传播模型,只需训练一次即可适用于多个任务。为了有效地结合这两个模块,使用双向传播来对来自不同帧的分割假设进行(半)在线融合,以生成一致的分割结果。展示了这种解耦的方法在多个数据稀缺任务中表现出色,包括大词汇量视频全景分割、开放世界视频分割、指代视频分割和无监督视频对象分割。

项目主页:https://hkchengrex.com/Tracking-Anything-with-DEVA/

论文地址:https://arxiv.org/abs/2309.03903

代码地址:https://github.com/hkchengrex/Tracking-Anything-with-DEVA

相关推荐
AIbase202422 分钟前
国内MCP服务平台推荐!aibase.cn上线MCP服务器集合平台
运维·服务器·人工智能
喜欢吃豆1 小时前
快速手搓一个MCP服务指南(九): FastMCP 服务器组合技术:构建模块化AI应用的终极方案
服务器·人工智能·python·深度学习·大模型·github·fastmcp
星融元asterfusion1 小时前
基于路径质量的AI负载均衡异常路径检测与恢复策略
人工智能·负载均衡·异常路径
zskj_zhyl1 小时前
智慧养老丨从依赖式养老到自主式养老:如何重构晚年生活新范式
大数据·人工智能·物联网
创小匠1 小时前
创客匠人视角下创始人 IP 打造与知识变现的底层逻辑重构
人工智能·tcp/ip·重构
xiangduanjava2 小时前
关于安装Ollama大语言模型本地部署工具
人工智能·语言模型·自然语言处理
zzywxc7872 小时前
AI 正在深度重构软件开发的底层逻辑和全生命周期,从技术演进、流程重构和未来趋势三个维度进行系统性分析
java·大数据·开发语言·人工智能·spring
超龄超能程序猿2 小时前
(1)机器学习小白入门 YOLOv:从概念到实践
人工智能·机器学习
大熊背2 小时前
图像处理专业书籍以及网络资源总结
人工智能·算法·microsoft