目录

【计算机视觉--解耦视频分割跟踪任何物体】

UIUC&Adobe开源|无需监督,使用解耦视频分割跟踪任何物体!视频分割的训练数据往往昂贵且需要大量的标注工作。这限制了将端到端算法扩展到新的视频分割任务,特别是在大词汇量的情况下。为了在不为每个个别任务训练视频数据的情况下实现"跟踪任何物体",开发了一种解耦视频分割方法(DEVA),包括任务特定的图像级分割和类/任务无关的双向时间传播。由于这种设计,只需要为目标任务训练一个图像级别的模型(这更便宜),以及一个通用的时间传播模型,只需训练一次即可适用于多个任务。为了有效地结合这两个模块,使用双向传播来对来自不同帧的分割假设进行(半)在线融合,以生成一致的分割结果。展示了这种解耦的方法在多个数据稀缺任务中表现出色,包括大词汇量视频全景分割、开放世界视频分割、指代视频分割和无监督视频对象分割。

项目主页:https://hkchengrex.com/Tracking-Anything-with-DEVA/

论文地址:https://arxiv.org/abs/2309.03903

代码地址:https://github.com/hkchengrex/Tracking-Anything-with-DEVA

本文是转载文章,点击查看原文
如有侵权,请联系 xyy@jishuzhan.net 删除
相关推荐
jndingxin6 分钟前
OpenCV 图形API(14)用于执行矩阵(或图像)与一个标量值的逐元素乘法操作函数mulC()
人工智能·opencv
晓13131 小时前
第七章 Python基础进阶-异常、模块与包(其五)
人工智能·python
Swift社区1 小时前
AI+自动化测试:如何让测试编写效率提升10倍?
人工智能
weixin_442424031 小时前
Opencv计算机视觉编程攻略-第九节 描述和匹配兴趣点
人工智能·opencv·计算机视觉
thinkMoreAndDoMore1 小时前
深度学习处理文本(5)
人工智能·python·深度学习
AI_Echoes1 小时前
检索增强生成(RAG) 优化策略篇
人工智能
congregalis2 小时前
跳出框架:一步步实现简易Deep Search Agent
人工智能·程序员·源码
weixin_750335522 小时前
李沐 X 动手学深度学习--第九章 现代循环神经网络
人工智能·rnn·深度学习
摸鱼仙人~2 小时前
深度学习数据集划分比例多少合适
人工智能·深度学习
Blossom.1182 小时前
《探索边缘计算:重塑未来智能物联网的关键技术》
人工智能·深度学习·神经网络·物联网·机器学习·计算机视觉·边缘计算