【计算机视觉--解耦视频分割跟踪任何物体】

UIUC&Adobe开源|无需监督,使用解耦视频分割跟踪任何物体!视频分割的训练数据往往昂贵且需要大量的标注工作。这限制了将端到端算法扩展到新的视频分割任务,特别是在大词汇量的情况下。为了在不为每个个别任务训练视频数据的情况下实现"跟踪任何物体",开发了一种解耦视频分割方法(DEVA),包括任务特定的图像级分割和类/任务无关的双向时间传播。由于这种设计,只需要为目标任务训练一个图像级别的模型(这更便宜),以及一个通用的时间传播模型,只需训练一次即可适用于多个任务。为了有效地结合这两个模块,使用双向传播来对来自不同帧的分割假设进行(半)在线融合,以生成一致的分割结果。展示了这种解耦的方法在多个数据稀缺任务中表现出色,包括大词汇量视频全景分割、开放世界视频分割、指代视频分割和无监督视频对象分割。

项目主页:https://hkchengrex.com/Tracking-Anything-with-DEVA/

论文地址:https://arxiv.org/abs/2309.03903

代码地址:https://github.com/hkchengrex/Tracking-Anything-with-DEVA

相关推荐
charley.layabox2 小时前
8月1日ChinaJoy酒会 | 游戏出海高端私享局 | 平台 × 发行 × 投资 × 研发精英畅饮畅聊
人工智能·游戏
DFRobot智位机器人3 小时前
AIOT开发选型:行空板 K10 与 M10 适用场景与选型深度解析
人工智能
想成为风筝5 小时前
从零开始学习深度学习—水果分类之PyQt5App
人工智能·深度学习·计算机视觉·pyqt
F_D_Z5 小时前
MMaDA:多模态大型扩散语言模型
人工智能·语言模型·自然语言处理
大知闲闲哟5 小时前
深度学习G2周:人脸图像生成(DCGAN)
人工智能·深度学习
飞哥数智坊6 小时前
Coze实战第15讲:钱都去哪儿了?Coze+飞书搭建自动记账系统
人工智能·coze
wenzhangli76 小时前
低代码引擎核心技术:OneCode常用动作事件速查手册及注解驱动开发详解
人工智能·低代码·云原生
千宇宙航7 小时前
闲庭信步使用图像验证平台加速FPGA的开发:第十课——图像gamma矫正的FPGA实现
图像处理·计算机视觉·缓存·fpga开发
潘达斯奈基~7 小时前
大模型的Temperature、Top-P、Top-K、Greedy Search、Beem Search
人工智能·aigc
倔强青铜三7 小时前
苦练Python第18天:Python异常处理锦囊
人工智能·python·面试