微调baichuan2-7b遇到的显存坑

问题描述:

微调baichuan2-7b模型,验证一轮后继续训练第一个iteration显存大幅增加

项目链接:
https://github.com/wp931120/baichuan_sft_lora

具体描述:

由于某些原因,笔者是在transformers4.30.2、torch2.0.1,accelerate==0.22版本上进行实验。

在训练过程中,发现显存溢出,考虑是句子长度问题,将1024设置为512。

然而训练还是显存溢出,通过调试分析,在评估验证集之前,显存大概占用11G左右,在评估过程中,显存依然保持11G左右,然而评估一结束,继续训练时,显存大幅增加,变为20G左右,后面不管怎么训练和评估,显存基本上都维持在20G。

然而根据项目作者的实验,明明12G左右的显存就够。

为此,后经群里大佬提示,考虑释放torch缓存或者更新transformers版本。

1、尝试各种方式在评估之后释放显存依然无效。

2、由于某些原因无法更新transformers版本,暂无法验证。

由于作者在原始代码上的更改并不多,遂怀疑是否是由于基座大模型(baichuan2-7b)的原因导致显存增加,因此将基座大模型换成chatglm2-6b,将数据处理的代码稍作修改后进行实验,发现模型在评估后继续训练显存没有大幅增加

至此,虽然不清楚为什么baichuan-7b在当前环境无法正常训练,可能的原因是当前版本的transformers不太足够支持baichuan-7b的训练,对chatglm2-6b训练是足够的。

注释:

卡2是chatglm2-6b在qlora训练模式下的显存占用,卡3是baichuan2-7b在qlora训练模式下的显存占用。

相关推荐
非门由也2 分钟前
《sklearn机器学习——回归指标2》
机器学习·回归·sklearn
ViperL119 分钟前
[优化算法]神经网络结构搜索(一)
深度学习·神经网络·计算机视觉
Learn Beyond Limits30 分钟前
The learning process of Decision Tree Model|决策树模型学习过程
人工智能·深度学习·神经网络·学习·决策树·机器学习·ai
数据爬坡ing35 分钟前
从挑西瓜到树回归:用生活智慧理解机器学习算法
数据结构·深度学习·算法·决策树·机器学习
m0_677034351 小时前
机器学习-异常检测
人工智能·深度学习·机器学习
Niuguangshuo2 小时前
深度学习基本模块:Conv2D 二维卷积层
人工智能·深度学习
Christo34 小时前
TFS-2003《A Contribution to Convergence Theory of Fuzzy c-Means and Derivatives》
人工智能·算法·机器学习
Yingjun Mo4 小时前
1. 统计推断-ALMOND收敛性分析
人工智能·算法·机器学习
Loving_enjoy4 小时前
YOLOv11改进大全:从卷积层到检测头,全方位提升目标检测性能
经验分享·机器学习·迁移学习·facebook
A尘埃5 小时前
TensorFlow 和 PyTorch两大深度学习框架训练数据,并协作一个电商推荐系统
pytorch·深度学习·tensorflow