微调baichuan2-7b遇到的显存坑

问题描述:

微调baichuan2-7b模型,验证一轮后继续训练第一个iteration显存大幅增加

项目链接:
https://github.com/wp931120/baichuan_sft_lora

具体描述:

由于某些原因,笔者是在transformers4.30.2、torch2.0.1,accelerate==0.22版本上进行实验。

在训练过程中,发现显存溢出,考虑是句子长度问题,将1024设置为512。

然而训练还是显存溢出,通过调试分析,在评估验证集之前,显存大概占用11G左右,在评估过程中,显存依然保持11G左右,然而评估一结束,继续训练时,显存大幅增加,变为20G左右,后面不管怎么训练和评估,显存基本上都维持在20G。

然而根据项目作者的实验,明明12G左右的显存就够。

为此,后经群里大佬提示,考虑释放torch缓存或者更新transformers版本。

1、尝试各种方式在评估之后释放显存依然无效。

2、由于某些原因无法更新transformers版本,暂无法验证。

由于作者在原始代码上的更改并不多,遂怀疑是否是由于基座大模型(baichuan2-7b)的原因导致显存增加,因此将基座大模型换成chatglm2-6b,将数据处理的代码稍作修改后进行实验,发现模型在评估后继续训练显存没有大幅增加

至此,虽然不清楚为什么baichuan-7b在当前环境无法正常训练,可能的原因是当前版本的transformers不太足够支持baichuan-7b的训练,对chatglm2-6b训练是足够的。

注释:

卡2是chatglm2-6b在qlora训练模式下的显存占用,卡3是baichuan2-7b在qlora训练模式下的显存占用。

相关推荐
youngfengying12 小时前
Swin Transformer
人工智能·深度学习·transformer
CNRio14 小时前
人工智能基础架构与算力之3 Transformer 架构深度解析:从注意力机制到算力适配演进
人工智能·深度学习·transformer
qy-ll14 小时前
深度学习——CNN入门
人工智能·深度学习·cnn
青瓷程序设计18 小时前
动物识别系统【最新版】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
人工智能·python·深度学习
F_D_Z18 小时前
数据集相关类代码回顾理解 | sns.distplot\%matplotlib inline\sns.scatterplot
python·深度学习·matplotlib
yLDeveloper19 小时前
一只菜鸟学机器学习的日记:入门分布偏移
机器学习·dive into deep learning
阿龙AI日记19 小时前
详解Transformer04:Decoder的结构
人工智能·深度学习·自然语言处理
xier_ran1 天前
深度学习:生成对抗网络(GAN)详解
人工智能·深度学习·机器学习·gan
海边夕阳20061 天前
【每天一个AI小知识】:什么是循环神经网络?
人工智能·经验分享·rnn·深度学习·神经网络·机器学习
【建模先锋】1 天前
论文复现!基于SAM-BiGRU网络的锂电池RUL预测
深度学习·论文复现·锂电池寿命预测·锂电池数据集·寿命预测