MapReduce\Shuffle

MapReduce\Shuffle

MapReduce

是一种编程模型,用于处理和生成大数据集。这个模型由两个主要步骤组成:Map步骤和Reduce步骤。

  1. Map步骤:在这个步骤中,输入数据集被分割成多个独立的数据块,然后每个数据块被分配给一个Map任务进行处理。Map任务的作用是处理输入数据,并将结果以键值对(key-value pair)的形式输出。

  2. Reduce步骤:在这个步骤中,所有Map任务的输出被收集并按照键进行排序和分组,然后将相同键的数据发送到同一个Reduce任务进行处理。Reduce任务的作用是将所有相同键的值进行合并,生成最终的输出结果。

MapReduce模型的优点是它可以在大规模的集群中并行处理大量的数据,而且它可以很好地处理硬件故障和网络问题。

Google首先提出了这个模型,并在其内部广泛使用。后来,Apache Hadoop项目实现了一个开源的MapReduce框架,使得这个模型得以在全球范围内广泛应用。

Shuffle

在计算机科学中通常指的是数据的重新分配过程,特别是在并行和分布式计算中。在这些场景中,"shuffle"过程将数据从一个任务(或节点、处理器等)移动到另一个任务,以便进行进一步的处理。

在大数据处理框架(如Hadoop和Spark)中,"shuffle"是一个非常重要的步骤。例如,在MapReduce模型中,"shuffle"步骤发生在"map"步骤和"reduce"步骤之间,它将"map"步骤的输出按照键(key)进行排序和分组,然后将相同键的数据发送到同一个"reduce"任务进行处理。

"Shuffle"过程通常涉及大量的数据传输和磁盘I/O操作,因此在性能优化时,"shuffle"过程是一个重要的考虑因素。一些优化策略包括减少"shuffle"的数据量、优化数据的序列化和反序列化过程、使用更高效的数据传输协议等。

相关推荐
zgl_200537791 小时前
ZGLanguage 解析SQL数据血缘 之 Python + Echarts 显示SQL结构图
大数据·数据库·数据仓库·hadoop·sql·代码规范·源代码管理
廋到被风吹走4 小时前
【Spring】Spring Cloud 分布式事务:Seata AT/TCC/Saga 模式选型指南
分布式·spring·spring cloud
刘一说8 小时前
Spring Cloud微服务中的分布式追踪:从故障定位到性能优化的革命性实践
分布式·spring cloud·微服务
飞Link9 小时前
【Sqoop】Sqoop 使用教程:从原理到实战的完整指南
数据库·hadoop·sqoop
程序员agions11 小时前
Node.js 爬虫实战指南(三):分布式爬虫架构,让你的爬虫飞起来
分布式·爬虫·node.js
回家路上绕了弯13 小时前
Spring Boot多数据源配置实战指南:从选型到落地优化
分布式·后端
小雨下雨的雨13 小时前
Flutter鸿蒙共赢——生命之痕:图灵图样与反应-扩散方程的生成美学
分布式·flutter·华为·交互·harmonyos·鸿蒙系统
用户21903265273515 小时前
SpringCloud分布式追踪深度实战:Sleuth+Zipkin从入门到生产部署全攻略
分布式·后端·spring cloud
Knight_AL15 小时前
深入理解 RabbitMQ 的AMQP 交换机类型与路由机制
分布式·rabbitmq