MapReduce\Shuffle

MapReduce\Shuffle

MapReduce

是一种编程模型,用于处理和生成大数据集。这个模型由两个主要步骤组成:Map步骤和Reduce步骤。

  1. Map步骤:在这个步骤中,输入数据集被分割成多个独立的数据块,然后每个数据块被分配给一个Map任务进行处理。Map任务的作用是处理输入数据,并将结果以键值对(key-value pair)的形式输出。

  2. Reduce步骤:在这个步骤中,所有Map任务的输出被收集并按照键进行排序和分组,然后将相同键的数据发送到同一个Reduce任务进行处理。Reduce任务的作用是将所有相同键的值进行合并,生成最终的输出结果。

MapReduce模型的优点是它可以在大规模的集群中并行处理大量的数据,而且它可以很好地处理硬件故障和网络问题。

Google首先提出了这个模型,并在其内部广泛使用。后来,Apache Hadoop项目实现了一个开源的MapReduce框架,使得这个模型得以在全球范围内广泛应用。

Shuffle

在计算机科学中通常指的是数据的重新分配过程,特别是在并行和分布式计算中。在这些场景中,"shuffle"过程将数据从一个任务(或节点、处理器等)移动到另一个任务,以便进行进一步的处理。

在大数据处理框架(如Hadoop和Spark)中,"shuffle"是一个非常重要的步骤。例如,在MapReduce模型中,"shuffle"步骤发生在"map"步骤和"reduce"步骤之间,它将"map"步骤的输出按照键(key)进行排序和分组,然后将相同键的数据发送到同一个"reduce"任务进行处理。

"Shuffle"过程通常涉及大量的数据传输和磁盘I/O操作,因此在性能优化时,"shuffle"过程是一个重要的考虑因素。一些优化策略包括减少"shuffle"的数据量、优化数据的序列化和反序列化过程、使用更高效的数据传输协议等。

相关推荐
AKAMAI1 小时前
分布式边缘推理正在改变一切
人工智能·分布式·云计算
慧一居士2 小时前
xxl-job服务搭建,以及 springboot 集成xxl-job 项目完整步骤示例
分布式·中间件
阿里云大数据AI技术6 小时前
迅雷基于阿里云 EMR Serverless Spark 实现数仓资源效率与业务提升
spark
TTBIGDATA6 小时前
【Knox编译】webhdfs-test 依赖收敛冲突问题处理
大数据·hadoop·ambari·hdp·kerberos·knox·bigtop
oMcLin6 小时前
如何在 Ubuntu 22.04 服务器上实现分布式数据库 Cassandra 集群,优化数据一致性与写入吞吐量
服务器·分布式·ubuntu
马达加斯加D10 小时前
系统设计 --- 使用消息队列解决分布式事务
分布式
心止水j11 小时前
hive问题
数据仓库·hive·hadoop
遇见火星11 小时前
RabbitMQ 高可用:HAProxy 负载均衡实战指南
分布式·消息队列·rabbitmq·负载均衡·haproxy
伟大的大威11 小时前
在 NVIDIA DGX Spark部署 Stable Diffusion 3.5 并使用ComfyUI
stable diffusion·spark·comfyui
Blossom.11812 小时前
基于多智能体协作的自动化数据分析系统实践:从单点工具到全流程智能
运维·人工智能·分布式·智能手机·自动化·prompt·边缘计算