MapReduce\Shuffle

MapReduce\Shuffle

MapReduce

是一种编程模型,用于处理和生成大数据集。这个模型由两个主要步骤组成:Map步骤和Reduce步骤。

  1. Map步骤:在这个步骤中,输入数据集被分割成多个独立的数据块,然后每个数据块被分配给一个Map任务进行处理。Map任务的作用是处理输入数据,并将结果以键值对(key-value pair)的形式输出。

  2. Reduce步骤:在这个步骤中,所有Map任务的输出被收集并按照键进行排序和分组,然后将相同键的数据发送到同一个Reduce任务进行处理。Reduce任务的作用是将所有相同键的值进行合并,生成最终的输出结果。

MapReduce模型的优点是它可以在大规模的集群中并行处理大量的数据,而且它可以很好地处理硬件故障和网络问题。

Google首先提出了这个模型,并在其内部广泛使用。后来,Apache Hadoop项目实现了一个开源的MapReduce框架,使得这个模型得以在全球范围内广泛应用。

Shuffle

在计算机科学中通常指的是数据的重新分配过程,特别是在并行和分布式计算中。在这些场景中,"shuffle"过程将数据从一个任务(或节点、处理器等)移动到另一个任务,以便进行进一步的处理。

在大数据处理框架(如Hadoop和Spark)中,"shuffle"是一个非常重要的步骤。例如,在MapReduce模型中,"shuffle"步骤发生在"map"步骤和"reduce"步骤之间,它将"map"步骤的输出按照键(key)进行排序和分组,然后将相同键的数据发送到同一个"reduce"任务进行处理。

"Shuffle"过程通常涉及大量的数据传输和磁盘I/O操作,因此在性能优化时,"shuffle"过程是一个重要的考虑因素。一些优化策略包括减少"shuffle"的数据量、优化数据的序列化和反序列化过程、使用更高效的数据传输协议等。

相关推荐
宸津-代码粉碎机13 小时前
Spring 6.0+Boot 3.0实战避坑全指南:5大类高频问题与解决方案(附代码示例)
java·数据仓库·hive·hadoop·python·技术文档编写
小股虫13 小时前
分布式事务:在增长中台,我们如何做到“发出去的内容”和“记录的数据”不打架?
分布式·微服务·云原生·架构·团队建设·方法论
是三好14 小时前
分布式事务seata
java·分布式·seata
optimistic_chen14 小时前
【Redis 系列】常用数据结构---Hash类型
linux·数据结构·redis·分布式·哈希算法
yuankunliu14 小时前
【分布式事务】4、分布式事务Seata的高级应用详解
分布式
java1234_小锋14 小时前
ZooKeeper集群中服务器之间是怎样通信的?
分布式·zookeeper·云原生
云器科技15 小时前
NinjaVan x 云器Lakehouse: 从传统自建Spark架构升级到新一代湖仓架构
大数据·ai·架构·spark·湖仓平台
昌sit!17 小时前
hadoop集群搭建
大数据·hadoop·分布式
左灯右行的爱情19 小时前
Kafka专辑- 消息队列是什么
分布式·kafka
小股虫19 小时前
让系统“杀不死”:同步与异步场景下的弹性设计模式手册
分布式·微服务·设计模式·架构·团队建设·方法论