NBA得分数据可视化

简介

这是上学期的一些课外活动内容,将 NBA 得分数据进行可视化,并进行后续的探索性分析和建模(本文未介绍)。主要研究动机来源于这篇论文:

该论文使用二元的伽马过程来刻画 NBA 主客场得分数据,并且考虑了两者之间的相关性。该模型可以预测最终得分和两支队伍的总得分。并将预测结果应用到了下注市场(赌球?)。

小编有话说:这是一篇将随机过程(可靠性中的退化过程)应用到了其他领域(体育,篮球)的典型代表。并且发到了管理学不错的期刊(ABS 4星),这种思路非常值得学习!

本文主要实现下论文中的得分数据图。下面是该论文中的大量主客场球队的得分路径图。本文主要针对某一场比赛的两支队伍进行可视化。

希望得到类似"腾讯体育"中的图形,如下所示:

案例教程

数据介绍

本文数据来自于该网站,需要对数据进行爬取。当然如果有合适的 R 包直接提供也是很不错的选择,体育相关 R 包可见: 。

这里以 2022 年 1 月 1 日的 印第安纳步行者洛杉矶快船 的比赛作为案例。首先,加载该数据:

r 复制代码
data1 = read_excel("1月/01-01-202 Indiana Pacers VS Los Angeles Clippers.xls")
colnames(data1) = c("序号","时间","比分")

数据包含三列,得分发生变化时,就会记录一条数据。该数据包含了 468 行。

数据预处理

接下来,对数据进行预处理。小编为了方便起见,写了一个简单的函数。

r 复制代码
data_precess = function(data1,home = "Charlotte Hornets", away = "Brooklyn Nets"){
  # 将"比分"列中的"0-0"转换为两列数据
  new_data <- separate(data1, col = "比分", into = c("主队比分", "客队比分"), sep = "-")
  # 将"时间"列中的字符串转换为时间值
  new_data$时间 <- as.numeric(ms(new_data$时间))
  new_data$时间 <- max(new_data$时间) - new_data$时间 
  time_pr = time_process(new_data$时间)
  new_data$新时间 = time_pr$new_dat
  new_data$节次 <- factor(time_pr$index)
  new_data$主队比分 = as.numeric(new_data$主队比分)
  new_data$客队比分 = as.numeric(new_data$客队比分)

  return(data = new_data) 
}

运行下面代码,你将获得数据处理后的结果:

r 复制代码
home = "Charlotte Hornets"
away = "Brooklyn Nets"
new_data = data_precess(data1, home = home, away = away)

主要思路就是把主客队的得分拆分成两列,并给出新的时间刻度和节次。

数据可视化

处理完数据,就可以进行可视化了。代码比较简单,主要使用 geom_line() 添加两条折线,使用 geom_rect() 添加阴影部分来区分不同的节次。此外,添加一些细节调整。

r 复制代码
new_data %>% 
  ggplot(aes(x = 新时间)) +
  geom_rect(xmin = 0, xmax = 720, ymin = -Inf, ymax = Inf, fill = "#F7F7F7", alpha = 0.5) +
  geom_rect(xmin = 0+720*2, xmax = 3*720, ymin = -Inf, ymax = Inf, fill = "#F7F7F7", alpha = 0.5) +
  geom_line(aes(y = 主队比分, color = "Home")) +
  geom_line(aes(y = 客队比分, color = "Away")) +
  # facet_wrap(vars(节次)) +
  scale_x_continuous(expand = c(0,0),breaks = seq(0, 2160, 720)) +
  scale_y_continuous(expand = c(0,0)) +
  scale_color_manual(name = "队伍",
                     values = c("Home" = "#DA2F20", "Away" = "#3E498D"),
                     labels = c(home,away))+
  labs(x = "时间", y = "比分") +
  theme_bw() + theme(panel.grid = element_blank(),
                     legend.position = c(0.13,0.9))

小编有话说

  • 该图仅仅展示了两个队伍整场比赛的得分情况,更多探索分析还能进行,例如:计算最大分差,比分交替领先次数等。

  • 本文所提论文就是基于这样的得分数据,使用随机过程进行建模与预测。这是一个很不错的出发点,更多的统计知识应用到该数据中还需要我们进一步探索。

  • 如果读者们对这类体育数据感兴趣,欢迎一起交流合作!

相关推荐
B站_计算机毕业设计之家41 分钟前
计算机毕业设计:Python农业数据可视化分析系统 气象数据 农业生产 粮食数据 播种数据 爬虫 Django框架 天气数据 降水量(源码+文档)✅
大数据·爬虫·python·机器学习·信息可视化·课程设计·农业
hqyjzsb2 小时前
2025年市场岗位能力重构与跨领域转型路径分析
c语言·人工智能·信息可视化·重构·媒体·改行学it·caie
jarreyer7 小时前
常见分析方法与对应图表汇总
python·信息可视化·数据分析
Hy行者勇哥12 小时前
文本描述驱动的可视化工具在IDE中的应用与实践
信息可视化
麦麦大数据12 小时前
F029 vue游戏推荐大数据可视化系统vue+flask+mysql|steam游戏平台可视化
vue.js·游戏·信息可视化·flask·推荐算法·游戏推荐
jz_ddk1 天前
[LVGL] 从0开始,学LVGL:进阶应用与项目实战(上)
linux·信息可视化·嵌入式·gui·lvgl·界面设计
兮兮能吃能睡1 天前
R语言术语(2)
开发语言·r语言
CodeJourney.1 天前
SQL提数与数据分析指南
数据库·信息可视化·数据分析
聊聊MES那点事1 天前
电脑零配件行业MES系统:快速实现全过程信息溯源
信息可视化·数据分析·数据可视化·mes
小白学大数据2 天前
Python爬虫数据可视化:深度分析贝壳成交价格趋势与分布
爬虫·python·信息可视化