国产670亿参数的DeepSeek:超越Llama2,全面开源

模型概述

DeepSeek,一款国产大型语言模型(LLM),凭借其670亿参数的规模,正引领着人工智能领域的新浪潮。这款模型不仅在多项中英文公开评测榜单上超越了700亿参数的Llama 2,而且在推理、数学和编程能力方面表现突出。最引人注目的是,DeepSeek在匈牙利最新高中数学考试中获得了65分的高分,显示出其卓越的数学解题能力。

技术创新

DeepSeek的核心架构借鉴了Llama模型,采用自回归Transformer解码器架构。它具有两个版本,分别是70亿和670亿参数。重要的是,该模型使用多头注意力(MHA)和分组查询注意力(GQA)技术,这些技术有效提高了模型的性能和效率。此外,它在2万亿个中英文token的数据集上进行了预训练,展现出了强大的双语处理能力。

性能展示

在标准基准测试中,DeepSeek展示了其强大的能力。在多种语言任务,如TriviaQA、MMLU、GSM8K、HumanEval等方面,DeepSeek都显示出了卓越的性能。特别是在中文QA测试中,DeepSeek的表现超越了GPT-3.5,验证了其在处理中文内容上的优势。

指令跟随能力

DeepSeek还通过了Google发布的指令跟随评测集的测试,得分59.1分,领先于众多开源模型。尽管与GPT-4还有一定差距,但这一成绩充分证明了其在理解和执行复杂指令方面的能力。

编码能力测试

DeepSeek在LeetCode最新真题的测试中也表现出色,其性能优于国内常见的大模型,并显著超越了****GPT 3.5。这一结果证明了DeepSeek在编程领域的应用潜力。

训练细节

DeepSeek的训练过程着重于多步学习率计划,从2000个预测步骤开始,然后在大量token的基础上逐步达到最大学习率的一定比例。这种独特的学习率调整策略与Llama的传统余弦学习率衰减法截然不同,显示出其独特的训练效率。

开放和可访问性

值得一提的是,DeepSeek提供了70亿和670亿两个参数版本的基础模型和指令微调模型,均已开源并可免费商用。这一举措极大地促进了AI社区的发展和创新。

结论

DeepSeek的出现标志着国产大模型技术的一大进步。它不仅在性能上超越了国际同类产品,还在开放性和可用性方面树立了新的标准。无疑,DeepSeek将在促进AI技术的广泛应用和创新方面发挥重要作用。

模型下载

Huggingface模型下载

huggingface.co/deepseek-ai

AI快站模型免费加速下载

aifasthub.com/models/deep...

相关推荐
非门由也1 小时前
《sklearn机器学习——数据预处理》类别特征编码
人工智能·机器学习·sklearn
FairyGirlhub2 小时前
神经网络的初始化:权重与偏置的数学策略
人工智能·深度学习·神经网络
大写-凌祁6 小时前
零基础入门深度学习:从理论到实战,GitHub+开源资源全指南(2025最新版)
人工智能·深度学习·开源·github
焦耳加热6 小时前
阿德莱德大学Nat. Commun.:盐模板策略实现废弃塑料到单原子催化剂的高值转化,推动环境与能源催化应用
人工智能·算法·机器学习·能源·材料工程
深空数字孪生7 小时前
储能调峰新实践:智慧能源平台如何保障风电消纳与电网稳定?
大数据·人工智能·物联网
wan5555cn7 小时前
多张图片生成视频模型技术深度解析
人工智能·笔记·深度学习·算法·音视频
格林威8 小时前
机器视觉检测的光源基础知识及光源选型
人工智能·深度学习·数码相机·yolo·计算机视觉·视觉检测
今天也要学习吖8 小时前
谷歌nano banana官方Prompt模板发布,解锁六大图像生成风格
人工智能·学习·ai·prompt·nano banana·谷歌ai
Hello123网站8 小时前
glean-企业级AI搜索和知识发现平台
人工智能·产品运营·ai工具
AKAMAI8 小时前
Queue-it 为数十亿用户增强在线体验
人工智能·云原生·云计算