国产670亿参数的DeepSeek:超越Llama2,全面开源

模型概述

DeepSeek,一款国产大型语言模型(LLM),凭借其670亿参数的规模,正引领着人工智能领域的新浪潮。这款模型不仅在多项中英文公开评测榜单上超越了700亿参数的Llama 2,而且在推理、数学和编程能力方面表现突出。最引人注目的是,DeepSeek在匈牙利最新高中数学考试中获得了65分的高分,显示出其卓越的数学解题能力。

技术创新

DeepSeek的核心架构借鉴了Llama模型,采用自回归Transformer解码器架构。它具有两个版本,分别是70亿和670亿参数。重要的是,该模型使用多头注意力(MHA)和分组查询注意力(GQA)技术,这些技术有效提高了模型的性能和效率。此外,它在2万亿个中英文token的数据集上进行了预训练,展现出了强大的双语处理能力。

性能展示

在标准基准测试中,DeepSeek展示了其强大的能力。在多种语言任务,如TriviaQA、MMLU、GSM8K、HumanEval等方面,DeepSeek都显示出了卓越的性能。特别是在中文QA测试中,DeepSeek的表现超越了GPT-3.5,验证了其在处理中文内容上的优势。

指令跟随能力

DeepSeek还通过了Google发布的指令跟随评测集的测试,得分59.1分,领先于众多开源模型。尽管与GPT-4还有一定差距,但这一成绩充分证明了其在理解和执行复杂指令方面的能力。

编码能力测试

DeepSeek在LeetCode最新真题的测试中也表现出色,其性能优于国内常见的大模型,并显著超越了****GPT 3.5。这一结果证明了DeepSeek在编程领域的应用潜力。

训练细节

DeepSeek的训练过程着重于多步学习率计划,从2000个预测步骤开始,然后在大量token的基础上逐步达到最大学习率的一定比例。这种独特的学习率调整策略与Llama的传统余弦学习率衰减法截然不同,显示出其独特的训练效率。

开放和可访问性

值得一提的是,DeepSeek提供了70亿和670亿两个参数版本的基础模型和指令微调模型,均已开源并可免费商用。这一举措极大地促进了AI社区的发展和创新。

结论

DeepSeek的出现标志着国产大模型技术的一大进步。它不仅在性能上超越了国际同类产品,还在开放性和可用性方面树立了新的标准。无疑,DeepSeek将在促进AI技术的广泛应用和创新方面发挥重要作用。

模型下载

Huggingface模型下载

huggingface.co/deepseek-ai

AI快站模型免费加速下载

aifasthub.com/models/deep...

相关推荐
云空1 分钟前
《探索电脑麦克风声音采集多窗口实时可视化技术》
人工智能·python·算法
麦兜*5 分钟前
【Spring Boot】Spring Boot 4.0 的颠覆性AI特性全景解析,结合智能编码实战案例、底层架构革新及Prompt工程手册
java·人工智能·spring boot·后端·spring·架构
张较瘦_9 分钟前
[论文阅读] 人工智能 | 5C提示词框架的研究
论文阅读·人工智能
超龄超能程序猿22 分钟前
使用 Python 对本地图片进行图像分类
开发语言·人工智能·python·机器学习·分类·数据挖掘·scipy
大千AI助手25 分钟前
RLHF:人类反馈强化学习 | 对齐AI与人类价值观的核心引擎
人工智能·深度学习·算法·机器学习·强化学习·rlhf·人类反馈强化学习
我爱一条柴ya37 分钟前
【AI大模型】RAG系统组件:向量数据库(ChromaDB)
数据库·人工智能·pytorch·python·ai·ai编程
MARS_AI_42 分钟前
云蝠智能VoiceAgent重构企业电话客服体系
人工智能·自然语言处理·人机交互·交互·信息与通信
在猴站学算法4 小时前
机器学习(西瓜书) 第二章 模型评估与选择
人工智能·机器学习
科技宅说5 小时前
36氪专访丨乐橙CEO谢运:AI科技下的业务创新与长期主义下的品牌坚守
人工智能·科技
学术小八6 小时前
2025年人工智能、虚拟现实与交互设计国际学术会议
人工智能·交互·vr