mysql使用全文索引+ngram全文解析器进行全文检索

表结构:表名 gamedb 主键 id 问题类型 type 问题 issue 答案 answer

需求

现在有个游戏资料库储存在mysql中,客户端进行搜索,需要对三个字段进行匹配,得到三个字段的相关性,选出三个字段中相关性最大的值进行排序,以此获取相关性最高的数据。如以上表,用户搜索的问题是 "如何获得更多游戏积分?",然后我需要在(type,issue,answer)三个字段里面进行匹配,找到和这个问题相关性最高的数据。

思路

使用MySQL全文检索进行关键词搜索并按相关性得分排序的查询语句。本人mysql版本5.7.24

mysql全文检索,对mysql版本有什么要求?
  1. 从MySQL 5.6版本开始,InnoDB存储引擎开始支持全文索引。而在MySQL 5.7版本之后,通过使用ngram插件开始支持中文全文索引。在MySQL 5.7.6之前,全文索引只支持英文全文索引,不支持中文全文索引。
  2. 对于MySQL 5.6版本之前,只有MyISAM存储引擎支持全文索引,而从MySQL 5.6版本开始,InnoDB和MyISAM均支持全文索引。
  3. 需要注意的是,MySQL的全文索引对中文的支持存在一定限制,因此在实际应用中可能需要采用其它方案去替代。
ngram全文分析器
什么是ngram?

ngram是全文解析器能够对文本进行分词,中文分词用 ngram_token_size 设定分词的大小,ngram_token_size 的值就是连续n个字的序列

示例:使用ngram对于全文索引进行分词

ngram_token_size =1,分词为 '全','文','索','引'
ngram_token_size =2,分词为 '全文','文索','索引'
ngram_token_size =3,分词为 '全文索','文索引'
ngram_token_size =4,分词为 '全文索引'

如何查看配置ngram_token_size?
sql 复制代码
#查看默认分词大小 ngram_token_size=2
show variables like '%token%';

查询结果

innodb_ft_min_token_size

默认3,表示最小3个字符作为一个关键词,增大该值可减少全文索引的大小

innodb_ft_max_token_size

默认84,表示最大84个字符作为一个关键词,限制该值可减少全文索引的大小

ngram_token_size

默认2,表示2个字符作为内置分词解析器的一个关键词,如对"abcd"建立全文索引,关键词为'ab','bc','cd'

当使用ngram分词解析器时,innodb_ft_min_token_size和innodb_ft_max_token_size 无效

怎么配置ngram?

1、ngram可以作为启动字符串的一部分或者在配置文件中设置

启动字符串:

bash 复制代码
mysqld --ngram_token_size=2

2、配置文件(my.ini):

以windos系统为例,首先找到my.ini文件(默认安装路径:C:\ProgramData\MySQL\MySQL Server 5.7\my.ini),编辑该文件,在文件后加上如下配置:

bash 复制代码
# 设置mysql客户端默认字符集
default-character-set=utf8
[mysqld]
#设置3306端口
port = 3306

server_id=100
# 设置mysql的安装目录
basedir=D:\mysql-5.7.24-winx64
# 设置mysql数据库的数据的存放目录
datadir=D:\mysql-5.7.24-winx64\data
# 允许最大连接数
max_connections=200
# 服务端使用的字符集默认为8比特编码的latin1字符集
character-set-server=utf8
# 创建新表时将使用的默认存储引擎
default-storage-engine=INNODB

# 全文检索分词数
ngram_token_size=2

配置完成后重启服务

如何创建全文索引并且使用ngram?

1、通过建表语句建立

sql 复制代码
CREATE TABLE `full_search_test` (
  `id` int unsigned NOT NULL AUTO_INCREMENT,
  `author` varchar(200) COLLATE utf8mb4_general_ci DEFAULT NULL,
  `title` varchar(200) COLLATE utf8mb4_general_ci DEFAULT NULL,
  `content` text COLLATE utf8mb4_general_ci,
  PRIMARY KEY (`id`),
  FULLTEXT KEY `full_index_title` (`title`) WITH PARSER `ngram`  
) ENGINE=InnoDB AUTO_INCREMENT=9 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_general_ci

2、通过 alter table 的方式来添加

sql 复制代码
ALTER TABLE full_search_test ADD FULLTEXT INDEX full_index_title(title) WITH PARSER ngram;

3、直接通过create index的方式

sql 复制代码
#为title创建全文索引并且使用ngram全文解析器进行分词
CREATE FULLTEXT INDEX full_index_title ON full_search_test(title) WITH PARSER `ngram`;

实际案例

创建表
sql 复制代码
CREATE TABLE gamedb (
    id INT AUTO_INCREMENT PRIMARY KEY,
    type VARCHAR(255),
    issue VARCHAR(255),
    answer VARCHAR(255)
);
为type、issue和answer字段创建全文索引
sql 复制代码
CREATE FULLTEXT INDEX gamedb_index_type ON gamedb(type);
CREATE FULLTEXT INDEX gamedb_index_issue ON gamedb(issue);
CREATE FULLTEXT INDEX gamedb_index_answer ON gamedb(answer);

检测这三个字段

sql 复制代码
SELECT *,
       (MATCH(type) AGAINST('我喜欢扩展包包')) AS score_type,
       (MATCH(issue) AGAINST('我喜欢扩展包包')) AS score_issue,
       (MATCH(answer) AGAINST('我喜欢扩展包包')) AS score_answer
FROM gamedb
WHERE MATCH(type) AGAINST('我喜欢扩展包包') OR
      MATCH(issue) AGAINST('我喜欢扩展包包') OR
      MATCH(answer) AGAINST('我喜欢扩展包包');

缺点

n-gram分词是一种基于统计的分词方法,它将文本按照n个连续的词为单位进行切分。虽然n-gram分词在很多应用中表现良好,但也存在一些缺点:

  1. 歧义处理困难: n-gram分词无法处理词汇歧义,因为它只考虑了相邻词汇之间的关系,而没有考虑上下文的语境。在一些语境下,同一个词可能有不同的含义,而n-gram分词无法准确捕捉这种语境。

  2. 未考虑词序信息: n-gram分词方法忽略了词汇之间的具体顺序信息,只考虑了相邻词的组合。然而,在自然语言中,词汇的排列顺序对于理解文本意义非常重要,而n-gram分词无法很好地捕捉这种词序信息。

  3. 数据稀疏性: 随着n的增大,n-gram模型需要更多的训练数据来准确地估计参数,但在实际应用中,获得大规模标注数据并不总是容易。这会导致模型对于较长的n-gram组合的泛化能力下降。

  4. 词汇变化问题: 对于一些具有词形变化、时态变化等特性的语言,n-gram分词可能面临词汇变化导致的困扰。例如,动词的不同时态形式可能被认为是不同的n-gram,导致模型难以正确处理这种变化。

  5. 无法处理未知词汇: n-gram模型无法处理未在训练数据中出现的词汇,因为它们在统计信息中没有相应的记录。对于生僻词、新词或专业名词等,n-gram分词可能表现较差。

  6. **效率问题:**n-gram分词需要构建和维护大规模的n-gram模型,这可能导致内存消耗较大,并且在处理大量文本时可能会导致较慢的分词速度。

最后没有采纳这种方法,由于ngram分词不怎么灵活,不同的分词大小可能会在分词结果和性能方面有所差异。较小的n值(如2-gram)可能更适合处理短语和常见词语,而较大的n值(如4-gram)可能更适合处理长词和特定领域的术语。这里只是记录一下使用方法.........

相关推荐
蓝染-惣右介1 分钟前
【MyBatisPlus·最新教程】包含多个改造案例,常用注解、条件构造器、代码生成、静态工具、类型处理器、分页插件、自动填充字段
java·数据库·tomcat·mybatis
冷心笑看丽美人2 分钟前
Spring框架特性及包下载(Java EE 学习笔记04)
数据库
武子康1 小时前
Java-07 深入浅出 MyBatis - 一对多模型 SqlMapConfig 与 Mapper 详细讲解测试
java·开发语言·数据库·sql·mybatis·springboot
代码吐槽菌1 小时前
基于SSM的毕业论文管理系统【附源码】
java·开发语言·数据库·后端·ssm
路有瑶台2 小时前
MySQL数据库学习(持续更新ing)
数据库·学习·mysql
数字扫地僧2 小时前
WebLogic 版本升级的注意事项与流程
数据库
lwprain2 小时前
常用docker应用部署,wordpress、mysql、tomcat、nginx、redis
mysql·docker·tomcat
Viktor_Ye2 小时前
高效集成易快报与金蝶应付单的方案
java·前端·数据库
努力算法的小明3 小时前
SQL 复杂查询
数据库·sql
斗-匕3 小时前
MySQL 三大日志详解
数据库·mysql·oracle