tensorflow入门 自定义层

前面讲了自定义损失函数,自定义正则化,自定义评价函数。现在来讲自定义层,其实都差不多,继承重要的组件就可以了。自定义层就是基层keras.layers.Layer

python 复制代码
class MyLayer(keras.layers.Layer):
    def __init__(self, units, activation = None, **kwargs):
        super().__init__(**kwargs)
        self.units = units
        self.activation = keras.activations.get(activation)
        
    def build(self, batch_input_shape):
        self.kernel = self.add_weight(name = 'kernel', shape = [batch_input_shape[-1], self.units], initializer='glorot_normal')
        self.bais = self.add_weight(name = 'bias', shape = self.units, initializer='zeros')
        super().build(batch_input_shape)
        
    def call(self, x):
        return self.activation(X @ self.kernel + self.bias)
        
    def compute_output_shape(self, batch_input_shape):
        return tf.TensorShape(batch_input_shape.as_list()[:-1] + [self.units])
    
    def get_config(self):
        base_config = super().get_config()
        return {**base_config, 'units':self.units, 'activation': keras.activations.serialize(self.activation)}

还是老样子,继承keras已有的组件layers,然后实现几个必要的函数。

(1).构造函数将所有超参数用作参数,kwargs负责把所有的默认参数传递给父类,比如input_shape,trainable,name.

(2).build方法的作用是通过为每个权重调用add_weight()方法来创建层的变量,keras会自动推测输入的维度,也即是batch_input_shape

(3).call方法是每次计算矩阵相乘的时候,被自动调用的方法。

(4).compute_output_shape返回输出的维度,这个函数可有可无,keras会自动推断出输出的维度

(5).get_config是必须的,初始化父类的权重,以及自己的某些参数,当然不仅仅是unit和激活函数,值得注意的是,这里使用了keras.activation.serialize方法保存激活函数的完整配置。

上面创建的层可以直接拿来使用。比如dense = MyLayer(100,'relu')(input)

创建自定义的层也很灵活,可以多输入多输出,只不过需要再call返回的时候,分开返回,比如三个输入,两个输出的自定义层。

class MyLayer(keras.layers,Layer):

def call(self, X):

x1, x2, x3 = X

return [x1+x2, x2+x3]

这里只是举一个简单的例子

如果再自定义层中需要加入一些操作,比如正则化,也需要再call函数中实现。

相关推荐
晚霞的不甘1 小时前
CANN 支持多模态大模型:Qwen-VL 与 LLaVA 的端侧部署实战
人工智能·神经网络·架构·开源·音视频
华玥作者7 小时前
[特殊字符] VitePress 对接 Algolia AI 问答(DocSearch + AI Search)完整实战(下)
前端·人工智能·ai
AAD555888997 小时前
YOLO11-EfficientRepBiPAN载重汽车轮胎热成像检测与分类_3
人工智能·分类·数据挖掘
王建文go7 小时前
RAG(宠物健康AI)
人工智能·宠物·rag
ALINX技术博客7 小时前
【202601芯动态】全球 FPGA 异构热潮,ALINX 高性能异构新品预告
人工智能·fpga开发·gpu算力·fpga
易营宝7 小时前
多语言网站建设避坑指南:既要“数据同步”,又能“按市场个性化”,别踩这 5 个坑
大数据·人工智能
春日见8 小时前
vscode代码无法跳转
大数据·人工智能·深度学习·elasticsearch·搜索引擎
Drgfd8 小时前
真智能 vs 伪智能:天选 WE H7 Lite 用 AI 人脸识别 + 呼吸灯带,重新定义智能化充电桩
人工智能·智能充电桩·家用充电桩·充电桩推荐
好家伙VCC9 小时前
### WebRTC技术:实时通信的革新与实现####webRTC(Web Real-TimeComm
java·前端·python·webrtc
萤丰信息9 小时前
AI 筑基・生态共荣:智慧园区的价值重构与未来新途
大数据·运维·人工智能·科技·智慧城市·智慧园区