tensorflow入门 自定义层

前面讲了自定义损失函数,自定义正则化,自定义评价函数。现在来讲自定义层,其实都差不多,继承重要的组件就可以了。自定义层就是基层keras.layers.Layer

python 复制代码
class MyLayer(keras.layers.Layer):
    def __init__(self, units, activation = None, **kwargs):
        super().__init__(**kwargs)
        self.units = units
        self.activation = keras.activations.get(activation)
        
    def build(self, batch_input_shape):
        self.kernel = self.add_weight(name = 'kernel', shape = [batch_input_shape[-1], self.units], initializer='glorot_normal')
        self.bais = self.add_weight(name = 'bias', shape = self.units, initializer='zeros')
        super().build(batch_input_shape)
        
    def call(self, x):
        return self.activation(X @ self.kernel + self.bias)
        
    def compute_output_shape(self, batch_input_shape):
        return tf.TensorShape(batch_input_shape.as_list()[:-1] + [self.units])
    
    def get_config(self):
        base_config = super().get_config()
        return {**base_config, 'units':self.units, 'activation': keras.activations.serialize(self.activation)}

还是老样子,继承keras已有的组件layers,然后实现几个必要的函数。

(1).构造函数将所有超参数用作参数,kwargs负责把所有的默认参数传递给父类,比如input_shape,trainable,name.

(2).build方法的作用是通过为每个权重调用add_weight()方法来创建层的变量,keras会自动推测输入的维度,也即是batch_input_shape

(3).call方法是每次计算矩阵相乘的时候,被自动调用的方法。

(4).compute_output_shape返回输出的维度,这个函数可有可无,keras会自动推断出输出的维度

(5).get_config是必须的,初始化父类的权重,以及自己的某些参数,当然不仅仅是unit和激活函数,值得注意的是,这里使用了keras.activation.serialize方法保存激活函数的完整配置。

上面创建的层可以直接拿来使用。比如dense = MyLayer(100,'relu')(input)

创建自定义的层也很灵活,可以多输入多输出,只不过需要再call返回的时候,分开返回,比如三个输入,两个输出的自定义层。

class MyLayer(keras.layers,Layer):

def call(self, X):

x1, x2, x3 = X

return [x1+x2, x2+x3]

这里只是举一个简单的例子

如果再自定义层中需要加入一些操作,比如正则化,也需要再call函数中实现。

相关推荐
User_芊芊君子33 分钟前
AI Ping 深度评测:大模型 API 选型的 “理性决策中枢”,终结经验主义选型时代
人工智能
smile_Iris34 分钟前
Day 32 类的定义和方法
开发语言·python
reasonsummer40 分钟前
【教学类-89-11】20251209新年篇07——灰色姓名对联(名字做对联,姓氏做横批,福字贴(通义万相AI福字空心字))
python·通义万相
明天再做行么40 分钟前
一些我用人工智能 翻译文章的心得
人工智能
晚霞的不甘7 小时前
小智AI音箱:智能语音交互的未来之选
人工智能·交互·neo4j
飞Link7 小时前
【网络与 AI 工程的交叉】多模态模型的数据传输特点:视频、音频、文本混合通道
网络·人工智能·音视频
老蒋新思维7 小时前
创客匠人峰会实录:知识变现的场景化革命 —— 创始人 IP 如何在垂直领域建立变现壁垒
网络·人工智能·tcp/ip·重构·知识付费·创始人ip·创客匠人
老蒋新思维7 小时前
创客匠人峰会深度解析:智能体驱动知识变现的数字资产化路径 —— 创始人 IP 的长期增长密码
人工智能·网络协议·tcp/ip·重构·知识付费·创始人ip·创客匠人
测试19987 小时前
功能测试、自动化测试、性能测试的区别
自动化测试·python·功能测试·测试工具·职场和发展·性能测试·安全性测试
为爱停留7 小时前
Spring AI实现RAG(检索增强生成)详解与实践
人工智能·深度学习·spring