tensorflow入门 自定义层

前面讲了自定义损失函数,自定义正则化,自定义评价函数。现在来讲自定义层,其实都差不多,继承重要的组件就可以了。自定义层就是基层keras.layers.Layer

python 复制代码
class MyLayer(keras.layers.Layer):
    def __init__(self, units, activation = None, **kwargs):
        super().__init__(**kwargs)
        self.units = units
        self.activation = keras.activations.get(activation)
        
    def build(self, batch_input_shape):
        self.kernel = self.add_weight(name = 'kernel', shape = [batch_input_shape[-1], self.units], initializer='glorot_normal')
        self.bais = self.add_weight(name = 'bias', shape = self.units, initializer='zeros')
        super().build(batch_input_shape)
        
    def call(self, x):
        return self.activation(X @ self.kernel + self.bias)
        
    def compute_output_shape(self, batch_input_shape):
        return tf.TensorShape(batch_input_shape.as_list()[:-1] + [self.units])
    
    def get_config(self):
        base_config = super().get_config()
        return {**base_config, 'units':self.units, 'activation': keras.activations.serialize(self.activation)}

还是老样子,继承keras已有的组件layers,然后实现几个必要的函数。

(1).构造函数将所有超参数用作参数,kwargs负责把所有的默认参数传递给父类,比如input_shape,trainable,name.

(2).build方法的作用是通过为每个权重调用add_weight()方法来创建层的变量,keras会自动推测输入的维度,也即是batch_input_shape

(3).call方法是每次计算矩阵相乘的时候,被自动调用的方法。

(4).compute_output_shape返回输出的维度,这个函数可有可无,keras会自动推断出输出的维度

(5).get_config是必须的,初始化父类的权重,以及自己的某些参数,当然不仅仅是unit和激活函数,值得注意的是,这里使用了keras.activation.serialize方法保存激活函数的完整配置。

上面创建的层可以直接拿来使用。比如dense = MyLayer(100,'relu')(input)

创建自定义的层也很灵活,可以多输入多输出,只不过需要再call返回的时候,分开返回,比如三个输入,两个输出的自定义层。

class MyLayer(keras.layers,Layer):

def call(self, X):

x1, x2, x3 = X

return [x1+x2, x2+x3]

这里只是举一个简单的例子

如果再自定义层中需要加入一些操作,比如正则化,也需要再call函数中实现。

相关推荐
Memene摸鱼日报23 分钟前
「Memene 摸鱼日报 2025.9.16」OpenAI 推出 GPT-5-Codex 编程模型,xAI 发布 Grok 4 Fast
人工智能·aigc
xiaohouzi11223326 分钟前
OpenCV的cv2.VideoCapture如何加GStreamer后端
人工智能·opencv·计算机视觉
用户1252055970828 分钟前
解决Stable Diffusion WebUI训练嵌入式模型报错问题
人工智能
用户83562907805129 分钟前
从手动编辑到代码生成:Python 助你高效创建 Word 文档
后端·python
Juchecar30 分钟前
一文讲清 nn.LayerNorm 层归一化
人工智能
martinzh31 分钟前
RAG系统大脑调教指南:模型选择、提示设计与质量控保一本通
人工智能
小关会打代码31 分钟前
计算机视觉案例分享之答题卡识别
人工智能·计算机视觉
Juchecar32 分钟前
一文讲清 nn.Linear 线性变换
人工智能
c8i34 分钟前
python中类的基本结构、特殊属性于MRO理解
python
Se7en2581 小时前
使用 NVIDIA Dynamo 部署 PD 分离推理服务
人工智能