tensorflow入门 自定义层

前面讲了自定义损失函数,自定义正则化,自定义评价函数。现在来讲自定义层,其实都差不多,继承重要的组件就可以了。自定义层就是基层keras.layers.Layer

python 复制代码
class MyLayer(keras.layers.Layer):
    def __init__(self, units, activation = None, **kwargs):
        super().__init__(**kwargs)
        self.units = units
        self.activation = keras.activations.get(activation)
        
    def build(self, batch_input_shape):
        self.kernel = self.add_weight(name = 'kernel', shape = [batch_input_shape[-1], self.units], initializer='glorot_normal')
        self.bais = self.add_weight(name = 'bias', shape = self.units, initializer='zeros')
        super().build(batch_input_shape)
        
    def call(self, x):
        return self.activation(X @ self.kernel + self.bias)
        
    def compute_output_shape(self, batch_input_shape):
        return tf.TensorShape(batch_input_shape.as_list()[:-1] + [self.units])
    
    def get_config(self):
        base_config = super().get_config()
        return {**base_config, 'units':self.units, 'activation': keras.activations.serialize(self.activation)}

还是老样子,继承keras已有的组件layers,然后实现几个必要的函数。

(1).构造函数将所有超参数用作参数,kwargs负责把所有的默认参数传递给父类,比如input_shape,trainable,name.

(2).build方法的作用是通过为每个权重调用add_weight()方法来创建层的变量,keras会自动推测输入的维度,也即是batch_input_shape

(3).call方法是每次计算矩阵相乘的时候,被自动调用的方法。

(4).compute_output_shape返回输出的维度,这个函数可有可无,keras会自动推断出输出的维度

(5).get_config是必须的,初始化父类的权重,以及自己的某些参数,当然不仅仅是unit和激活函数,值得注意的是,这里使用了keras.activation.serialize方法保存激活函数的完整配置。

上面创建的层可以直接拿来使用。比如dense = MyLayer(100,'relu')(input)

创建自定义的层也很灵活,可以多输入多输出,只不过需要再call返回的时候,分开返回,比如三个输入,两个输出的自定义层。

class MyLayer(keras.layers,Layer):

def call(self, X):

x1, x2, x3 = X

return [x1+x2, x2+x3]

这里只是举一个简单的例子

如果再自定义层中需要加入一些操作,比如正则化,也需要再call函数中实现。

相关推荐
埃菲尔铁塔_CV算法12 分钟前
深度学习神经网络创新点方向
人工智能·深度学习·神经网络
艾思科蓝-何老师【H8053】31 分钟前
【ACM出版】第四届信号处理与通信技术国际学术会议(SPCT 2024)
人工智能·信号处理·论文发表·香港中文大学
秀儿还能再秀1 小时前
机器学习——简单线性回归、逻辑回归
笔记·python·学习·机器学习
weixin_452600691 小时前
《青牛科技 GC6125:驱动芯片中的璀璨之星,点亮 IPcamera 和云台控制(替代 BU24025/ROHM)》
人工智能·科技·单片机·嵌入式硬件·新能源充电桩·智能充电枪
学术搬运工1 小时前
【珠海科技学院主办,暨南大学协办 | IEEE出版 | EI检索稳定 】2024年健康大数据与智能医疗国际会议(ICHIH 2024)
大数据·图像处理·人工智能·科技·机器学习·自然语言处理
右恩1 小时前
AI大模型重塑软件开发:流程革新与未来展望
人工智能
图片转成excel表格2 小时前
WPS Office Excel 转 PDF 后图片丢失的解决方法
人工智能·科技·深度学习
阿_旭2 小时前
如何使用OpenCV和Python进行相机校准
python·opencv·相机校准·畸变校准
幸运的星竹2 小时前
使用pytest+openpyxl做接口自动化遇到的问题
python·自动化·pytest
ApiHug2 小时前
ApiSmart x Qwen2.5-Coder 开源旗舰编程模型媲美 GPT-4o, ApiSmart 实测!
人工智能·spring boot·spring·ai编程·apihug