tensorflow入门 自定义层

前面讲了自定义损失函数,自定义正则化,自定义评价函数。现在来讲自定义层,其实都差不多,继承重要的组件就可以了。自定义层就是基层keras.layers.Layer

python 复制代码
class MyLayer(keras.layers.Layer):
    def __init__(self, units, activation = None, **kwargs):
        super().__init__(**kwargs)
        self.units = units
        self.activation = keras.activations.get(activation)
        
    def build(self, batch_input_shape):
        self.kernel = self.add_weight(name = 'kernel', shape = [batch_input_shape[-1], self.units], initializer='glorot_normal')
        self.bais = self.add_weight(name = 'bias', shape = self.units, initializer='zeros')
        super().build(batch_input_shape)
        
    def call(self, x):
        return self.activation(X @ self.kernel + self.bias)
        
    def compute_output_shape(self, batch_input_shape):
        return tf.TensorShape(batch_input_shape.as_list()[:-1] + [self.units])
    
    def get_config(self):
        base_config = super().get_config()
        return {**base_config, 'units':self.units, 'activation': keras.activations.serialize(self.activation)}

还是老样子,继承keras已有的组件layers,然后实现几个必要的函数。

(1).构造函数将所有超参数用作参数,kwargs负责把所有的默认参数传递给父类,比如input_shape,trainable,name.

(2).build方法的作用是通过为每个权重调用add_weight()方法来创建层的变量,keras会自动推测输入的维度,也即是batch_input_shape

(3).call方法是每次计算矩阵相乘的时候,被自动调用的方法。

(4).compute_output_shape返回输出的维度,这个函数可有可无,keras会自动推断出输出的维度

(5).get_config是必须的,初始化父类的权重,以及自己的某些参数,当然不仅仅是unit和激活函数,值得注意的是,这里使用了keras.activation.serialize方法保存激活函数的完整配置。

上面创建的层可以直接拿来使用。比如dense = MyLayer(100,'relu')(input)

创建自定义的层也很灵活,可以多输入多输出,只不过需要再call返回的时候,分开返回,比如三个输入,两个输出的自定义层。

class MyLayer(keras.layers,Layer):

def call(self, X):

x1, x2, x3 = X

return [x1+x2, x2+x3]

这里只是举一个简单的例子

如果再自定义层中需要加入一些操作,比如正则化,也需要再call函数中实现。

相关推荐
山川而川-R3 分钟前
图像进行拼接-后进行ocr检测识别
人工智能·计算机视觉·ocr
CIO4018 分钟前
AI未来--AI在制造业的最佳落地实践
人工智能
AI人工智能+23 分钟前
从“手动填”到“自动识”:营业执照识别技术革新政务体验
人工智能·深度学习·ocr·营业执照识别
txwtech23 分钟前
第9篇 opencv提取矩形角度不是很准确的处理方法
人工智能·opencv·计算机视觉
却道天凉_好个秋23 分钟前
OpenCV(十二):Mat
人工智能·opencv·计算机视觉
TreeExplore24 分钟前
OpenCV工程中直接包含调用vs2022
人工智能·opencv·计算机视觉
极客数模30 分钟前
2025年MathorCup 大数据竞赛明日开赛,注意事项!论文提交规范、模板、承诺书正确使用!2025年第六届MathorCup数学应用挑战赛——大数据竞赛
大数据·python·算法·matlab·图论·比赛推荐
Juchecar34 分钟前
从瑟瑟发抖到电流“高速公路”:揭秘能量与神奇的微观世界
人工智能
PieroPc42 分钟前
用Python Streamlit Sqlite3 写一个简单商品管理系统
数据库·python·sqlite·streamlit
小白银子43 分钟前
零基础从头教学Linux(Day 55)
java·linux·服务器·python