[23] GaussianAvatars: Photorealistic Head Avatars with Rigged 3D Gaussians

[paper](https://arxiv.org/pdf/2312.02069.pdf "paper") \| [proj](https://shenhanqian.github.io/gaussian-avatars "proj")

  • 给定FLAME,基于每个三角面片中心初始化一个3D Gaussian(3DGS);当FLAME mesh被驱动时,3DGS根据它的父亲三角面片,做平移、旋转和缩放变化;
  • 3DGS可以视作mesh上的辐射场;
  • 为实现高保真的avatar,本文提出一种蒙皮(binding)继承策略,在优化过程中,保持蒙皮对3DGS的控制;
  • 本文贡献如下:
    • 提出GaussianAvatars,通过将3DGS绑定至FLAME模型,实现可驱动的head avatars;
    • 设计了一种蒙皮继承策略,使得在保持蒙皮控制的情况下,3DGS的新增和移除。

近期工作

静态场景表征

  • NeRF用神经网络,以辐射场的形式存储场景;
  • 后续工作将场景表征为voxel grids、使用voxel hashing、或使用tensor decomposition,加速渲染;
  • PointNeRF使用点云表征场景;
  • 3D Gaussian Splatting使用各向异性3D Gaussian,实现实时渲染和优异的视觉效果;
  • Mixture of Volumetric Primitives使用surface-aligned volumes实现高视觉保真度的快速渲染;

动态场景表征

  • Basic Design:基于NeRF的方法,输入4D坐标(x, y, z, t),输出密度和颜色。例如:K-Plane、4K4D等。这类方法虽然效果不错,但是无法显式控制内容;
  • Deformation MLP:学习静态标定空间,通过MLP将其他时间下的空间映射回标准空间;
  • Proxy geometry:
  • Liu等人 [25] 基于SMPL移动后的最近三角面片,将观察空间中的点warp回标定空间;
  • Peng等人 [34] 基于SMPL的骨架和神经蒙皮系数(neural blending weights)变形点;
  • 前向变形(forward deformation)[13, 18, 20, 23, 48] 和cage-based deformation [54];
  • 不同于上述方法,本文将3DGS附着在三角面片上,并显式地移动他们,避免使用标定空间,并可使用mesh finetuning。

头像重建与驱动

  • Thies等人 [41] 实现了数字人的实时人脸跟踪和面部重现(face reenactment);
  • Gafni等人 [8] 从单目视频中以表情系数作为控制信号,学习NeRF;
  • Grassal等人 [10] 向FLAME中添加偏移量,增强几何,通过基于表情控制的纹理域,实现动态纹理;
  • IMavatar [51] 基于神经隐式方程学习3D可形变数字人,通过iterative root-finding实现标定空间到观察空间的映射;
  • HeadNeRF [11] 学习一个基于NeRF的参数化头模;
  • INSTA [55] 通过寻找FLAME上最近三角面片,将查询点映射回标定空间;
  • Zheng [52] 探索了基于点的表征和可导的点渲染方法,在标定空间中定义点集,学习受FLAME表情系数控制的形变场,以驱动数字人;
  • AvatarMAV [46] 定义了标定辐射场和运动场;
  • 不同于INSTA,本文在3DGS和三角面片间建立一致性关联。

方法

  • 根据给定的多视角图片和相机参数,估计每帧图片中的FLAME参数;
  • 建立三角面片和3DGS的关系;
  • 可导渲染得到图片与GT图片算损失,用于训练模型;
  • 在训练过程中,通过蒙皮继承策略(binding inheritance strategy)控制3DGS增删后与三角面片的对应关系。

绑定3DGS与三角面片

给定三角面片,本文计算:

  • 均值位置:给定三角面片的三条边,计算对应的均值位置;
  • 构造旋转矩阵:1)三角面片的某条边;2)三角面片的法向向量;3)与前两者垂直的第三边;
  • 放缩变量:通过三角形中一条边及其垂线的平均长度来计算标量,以描述三角面片缩放;

对于对应的3DGS,在局部空间定义其位置,旋转矩阵,各向异性缩放系数

  • 初始化时,为局部零点位置,为单位旋转矩阵,为单位矢量。
  • 渲染时,将其从局部空间转换为全局空间:

本文将三角面片的缩放系数,嵌入到公式5和6中,使得3DGS的局部位置和缩放与三角面片的缩放相关。这使得全局定义的学习率可以适用于局部。

蒙皮继承策略

  • 稠密:对于具有较大view-space positional gradient的3DGS,如果该点较大则拆分为两个,如果较小则复制一个新的;确保新3DGS和旧的足够近,这样可以将新点绑定至旧点对应的三角面片;
  • 剪枝:在3DGS原有剪枝的技术上,确保每个三角面片具有至少一个3DGS。有些脸部区域(眼球)常被遮挡,很有可能由于剪枝,导致眼球部分的3DGS被去掉。

优化和正则

  • 渲染图像损失如下,可以保证对已有场景有不错效果,但是对新表情和位置效果不佳(存在spike和blob伪影)

具有阈值的位置损失(Position loss with threshold)

在蒙皮继承策略中,本文通过拆分和复制增加新的3DGS。理想情况下,新增的3DGS应该与面片相邻。但是经过优化后,无法保证他们相邻。为解决该问题,本文引入了位置正则项:

,确保3DGS和它的父亲三角面片足够近。

具有阈值的放缩损失(Scaling loss with threshold)

如果某个3DGS相较于它的父亲三角面片更大,三角面片的小角度旋转,会在3DGS上被放大,导致伪影。为解决该问题,本文引入了放缩正则项:

,确保3DGS不会太大。

最终损失

其中,。这两项确保常被遮挡的区域(眼球、牙齿)可以被保留。

实现细节

  • Adam,位置学习率为5e-3,放缩学习率为1.7e-2;
  • 除了3DGS,FLAME的translation、joint rotation和表情系数也会fine-tune,学习率分别为:1e-6,1e-5和1e-3。
  • 训练600k iters,从10k iters之后,每2k iters执行3DGS的更新和蒙皮继承策略,每60k iters,重新设置3DGS的不透明度。

实验

  • 数据集:NeRSemble数据集上的9个目标,每个目标包含10种表情和16个视角。
  • 测试:1)新视角生成(novel-view synthesis);2)自重演(self-reenactment);3)跨ID重演(cross-identity reenactment)。

数字人重建

消融实验

相关推荐
daifgFuture1 天前
Android 3D球形水平圆形旋转,旋转动态更换图片
android·3d
牧子川1 天前
【论文解读】CVPR2023 PoseFormerV2:3D人体姿态估计(附论文地址)
3d·cvpr2023·poseformerv2
资深设备全生命周期管理1 天前
优化版本,增加3D 视觉 查看前面的记录
3d
m0_748250741 天前
GPUCUDA 发展编年史:从 3D 渲染到 AI 大模型时代(上)
人工智能·3d
少林6592 天前
谷歌地图高清卫星地图2026中文版下载|谷歌地图3D卫星高清版 V7.3.6.9796 最新免费版下载 - 前端工具导航
3d·谷歌地图
LeonDL1682 天前
HALCON 深度学习训练 3D 图像的几种方式优缺点
人工智能·python·深度学习·3d·halcon·halcon训练3d图像·深度学习训练3d图像
xhload3d3 天前
图扑软件 | 带你体验 Low Poly 卡通三维世界
物联网·3d·智慧城市·html5·webgl·数字孪生·可视化·工业互联网·三维建模·工控·轻量化·中国风·卡通动画·写实风格·科技风·low poly
图扑数字孪生3 天前
基于 HT for Web 轻量化 3D 数字孪生数据中心解决方案
3d·数字孪生·三维可视化·数据中心·智慧机房
njsgcs3 天前
PolyGen:一个用于 3D 网格的自回归生成模型 论文阅读
3d
Angel Q.3 天前
PnP(Perspective-n-Point)算法 | 用于求解已知n个3D点及其对应2D投影点的相机位姿
数码相机·算法·3d·pnp