Python电能质量扰动信号分类(一)基于LSTM模型的一维信号分类

目录

引言

[1 数据集制作与加载](#1 数据集制作与加载)

[1.1 导入数据](#1.1 导入数据)

[1.2 制作数据集](#1.2 制作数据集)

[2 LSTM分类模型和超参数选取](#2 LSTM分类模型和超参数选取)

[2.1 定义LSTM分类模型](#2.1 定义LSTM分类模型)

[2.2 定义模型参数](#2.2 定义模型参数)

[3 LSTM模型训练与评估](#3 LSTM模型训练与评估)

[3.1 模型训练](#3.1 模型训练)

[3.2 模型评估](#3.2 模型评估)


往期精彩内容:

Python-凯斯西储大学(CWRU)轴承数据解读与分类处理_cwru轴承数据集-CSDN博客

Python房价分析(一)pyton爬虫-CSDN博客

电能质量扰动信号数据介绍与分类-Python实现-CSDN博客

引言

本文基于Python仿真的电能质量扰动信号,先经过数据预处理进行数据集的制作和加载,然后通过Pytorch实现LSTM模型对扰动信号的分类。Python仿真电能质量扰动信号的详细介绍可以参考下文(文末附 10分类 数据集):

电能质量扰动信号数据介绍与分类-Python实现-CSDN博客

部分扰动信号类型波形图如下所示:

1 数据集制作与加载

1.1 导入数据

在参考IEEE Std1159-2019电能质量检测标准与相关文献的基础上构建了扰动信号的模型,生成包括正常信号在内的10中单一信号和多种复合扰动信号。参考之前的文章,进行扰动信号10分类的预处理:

第一步,按照公式模型生成单一信号

单一扰动信号可视化:

第二步,导入十分类数据

python 复制代码
import pandas as pd
import numpy as np

# 样本时长0.2s  样本步长512  每个信号生成500个样本  噪声0DB  
window_step = 512
samples = 500
noise = 0
split_rate = [0.7, 0.2, 0.1]  # 训练集、验证集、测试集划分比例

# 读取已处理的 CSV 文件
dataframe_10c = pd.read_csv('PDQ_10c_Clasiffy_data.csv' )
dataframe_10c.shape

1.2 制作数据集

第一步,定义制作数据集函数

第二步,制作数据集与分类标签

python 复制代码
from joblib import dump, load
# 生成数据
train_dataframe, val_dataframe, test_dataframe = make_data(dataframe_10c, split_rate)
# 制作标签
train_xdata, train_ylabel = make_data_labels(train_dataframe)
val_xdata, val_ylabel = make_data_labels(val_dataframe)
test_xdata, test_ylabel = make_data_labels(test_dataframe)
# 保存数据
dump(train_xdata, 'TrainX_512_0DB_10c')
dump(val_xdata, 'ValX_512_0DB_10c')
dump(test_xdata, 'TestX_512_0DB_10c')
dump(train_ylabel, 'TrainY_512_0DB_10c')
dump(val_ylabel, 'ValY_512_0DB_10c')
dump(test_ylabel, 'TestY_512_0DB_10c')

2 LSTM分类模型和超参数选取

2.1 定义LSTM分类模型

注意:输入数据进行了堆叠 ,把一个1*512 的序列 进行划分堆叠成形状为 32 * 16, 就使输入序列的长度降下来了。

2.2 定义模型参数

python 复制代码
# 定义模型参数
batch_size = 64
input_dim = 32
hidden_layer_sizes = [64, 128]
output_dim = 10

model = LSTMnetwork(batch_size, input_dim, hidden_layer_sizes, output_dim)  # 模型
model = model.to(device)
# 定义损失函数和优化函数

loss_function = nn.CrossEntropyLoss(reduction='sum')  # loss
learn_rate = 0.0003
optimizer = torch.optim.Adam(model.parameters(), learn_rate)  # 优化器

3 LSTM模型训练与评估

3.1 模型训练

训练结果

300个epoch,准确率将近98%,LSTM网络分类模型效果良好,继续调参还可以进一步提高分类准确率。

注意调整参数:

  • 可以适当增加 LSTM 层数和每层神经元个数,微调学习率;

  • 增加更多的 epoch (注意防止过拟合)

  • 可以改变一维信号堆叠的形状(设置合适的长度和维度)

3.2 模型评估

python 复制代码
# 模型 测试集 验证  
import torch.nn.functional as F
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 有GPU先用GPU训练


# 加载模型
model =torch.load('best_model_lstm.pt')


# 将模型设置为评估模式
model.eval()
# 使用测试集数据进行推断
with torch.no_grad():
    correct_test = 0
    test_loss = 0
    for test_data, test_label in test_loader:
        test_data, test_label = test_data.to(device), test_label.to(device)
        test_output = model(test_data)
        probabilities = F.softmax(test_output, dim=1)
        predicted_labels = torch.argmax(probabilities, dim=1)
        correct_test += (predicted_labels == test_label).sum().item()
        loss = loss_function(test_output, test_label)
        test_loss += loss.item()


test_accuracy = correct_test / len(test_loader.dataset)
test_loss = test_loss / len(test_loader.dataset)
print(f'Test Accuracy: {test_accuracy:4.4f}  Test Loss: {test_loss:10.8f}')


Test Accuracy: 0.9770  Test Loss: 0.22114271
相关推荐
程序员的世界你不懂8 分钟前
【Flask】实现一个前后端一体的项目-脚手架
后端·python·flask
花酒锄作田32 分钟前
[MCP][01]简介与概念
python·llm·mcp
Python私教35 分钟前
Django全栈班v1.04 Python基础语法 20250912 上午
后端·python·django
言之。37 分钟前
Django REST框架:ModelViewSet全面解析
数据库·python·django
Pocker_Spades_A1 小时前
Python快速入门专业版(二十六):Python函数基础:定义、调用与返回值(Hello函数案例)
开发语言·python
周周记笔记2 小时前
学习笔记:Python的起源
开发语言·python
魂尾ac2 小时前
Django + Vue3 前后端分离技术实现自动化测试平台从零到有系列 <第一章> 之 注册登录实现
后端·python·django·vue
月岛雫-2 小时前
“单标签/多标签” vs “二分类/多分类”
人工智能·分类·数据挖掘
Source.Liu2 小时前
【Pywinauto库】10.7 pywinauto.controls.uia_controls控件
windows·python·自动化
人工干智能2 小时前
建自己的Python项目仓库,使用工具:GitHub(远程仓库)、GitHub Desktop(版本控制工具)、VSCode(代码编辑器)
python·编辑器·github